ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬
£¨1£©ÉèÍÖÔ²CÉϵĵ㣨
3
£¬
3
2
£©µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ4£¬Ð´³öÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê
£¨2£©ÉèKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µã£¬ÇóÏ߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³Ì
£¨3£©ÉèµãPÊÇÍÖÔ²CÉϵÄÈÎÒâÒ»µã£¬¹ýÔ­µãµÄÖ±ÏßLÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±Ö±ÏßPM£¬PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM£¬KPNÊÔ̽¾¿kPM•KPNµÄÖµÊÇ·ñÓëµãP¼°Ö±ÏßLÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©ÓÉÓÚµã(
3
£¬
3
2
)
ÔÚÍÖÔ²ÉÏ£¬
(
3
)
2
a2
+
(
3
2
)
2
b2
=1

2a=4£¬
ÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1

½¹µã×ø±ê·Ö±ðΪ£¨-1£¬0£©£¬£¨1£¬0£©
£¨2£©ÉèKF1µÄÖеãΪB£¨x£¬y£©ÔòµãK£¨2x+1£¬2y£©
°ÑKµÄ×ø±ê´úÈëÍÖÔ²
x2
4
+
y2
3
=1
ÖеÃ
(2x+1)2
4
+
(2y)2
3
=1

Ï߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³ÌΪ(x+
1
2
)2+
y2
3
4
=1

£¨3£©¹ýÔ­µãµÄÖ±ÏßLÓëÍÖÔ²ÏཻµÄÁ½µãM£¬N¹ØÓÚ×ø±êÔ­µã¶Ô³Æ
ÉèM£¨x0£¬y0£©N£¨-x0£¬-y0£©£¬p£¨x£¬y£©
M£¬N£¬PÔÚÍÖÔ²ÉÏ£¬Ó¦Âú×ãÍÖÔ²·½³Ì£¬
µÃ
x02
a2
+
y02
b2
=1£¬
x2
a2
+
y2
b2
=1

kPM=
y-y0
x-x0
£¬KPN=
y+y0
x+x0

kPM•KPN=
y-y0
x-x0
y+y0
x+x0
=
y2-y02
x2-x02
=-
b2
a2

kPM•KPNµÄÖµÓëµãP¼°Ö±ÏßLÎÞ¹Ø
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÍÖÔ²±ÈÍÖÔ²½¹µãÔÚÖáÉϵÄÍÖÔ²¸ü½Ó½üÓÚÔ²£¬ÇóµÄ·¶Î§¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÈôµãPµ½¶¨µã£¨0£¬10£©Óëµ½¶¨Ö±Ïßy =µÄ¾àÀëÖ®±ÈÊÇ£¬ÔòµãPµÄ¹ì¼£·½³ÌÊÇ£¨ £©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¡÷ABCµÄ¶¥µãA£¨-5£¬0£©¡¢B£¨5£¬0£©£¬¡÷ABCµÄÖܳ¤Îª22£¬Ôò¶¥µãCµÄ¹ì¼£·½³ÌÊÇ£¨¡¡¡¡£©
A£®
x2
36
+
y2
11
=1
B£®
x2
25
+
y2
11
=1
C£®
x2
36
+
y2
11
=1(y¡Ù0)
D£®
x2
9
+
y2
16
=1(y¡Ù0)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

£¨BÌ⣩ÒÑÖªÔ²CµÄ·½³ÌΪ£¨x-1£©2+y2=9£¬µãpΪԲÉÏÒ»¶¯µã£¬¶¨µãA£¨-1£¬0£©£¬Ï߶ÎAPµÄ´¹Ö±Æ½·ÖÏßÓëÖ±ÏßCP½»ÓÚµãM£¬ÔòΪµãMµÄ¹ì¼£Îª£¨¡¡¡¡£©
A£®ÍÖÔ²B£®Ë«ÇúÏßC£®Å×ÎïÏßD£®Ô²

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖª½¹µãÔÚxÖáÉϵÄÍÖÔ²£¬³¤Ö᳤Ϊ4£¬ÓÒ½¹µãµ½ÓÒ¶¥µãµÄ¾àÀëΪ1£¬ÔòÍÖÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®
x2
4
+y2=1
B£®
x2
4
+
y2
3
=1
C£®
x2
4
+
y2
2
=1
D£®
x2
3
+
y2
4
=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

½¹µã×ø±êÊÇ£¨-2£¬0£©¡¢£¨2£¬0£©£¬ÇÒ¶ÌÖ᳤Ϊ2
6
µÄÍÖÔ²·½³ÌÊÇ£¨¡¡¡¡£©
A£®
x2
9
+
y2
6
=1
B£®
y2
9
+
x2
6
=1
C£®
x2
10
+
y2
6
=1
D£®
y2
10
+
x2
6
=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£ºÒÑÖªÍÖÔ²A£¬B£¬CÊdz¤Ö᳤Ϊ4µÄÍÖÔ²ÉÏÈýµã£¬µãAÊdz¤ÖáµÄÒ»¸ö¶Ëµã£¬BC¹ýÍÖÔ²µÄÖÐÐÄO£¬ÇÒ
AC
BC
=0£¬|
BC
|=2|
AC
|
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©Èç¹ûÍÖÔ²ÉÏÁ½µãP£¬QʹµÃÖ±ÏßCP£¬CQÓëxÖáΧ³Éµ×±ßÔÚxÖáÉϵĵÈÑüÈý½ÇÐΣ¬ÊÇ·ñ×Ü´æÔÚʵÊý¦Ëʹ
PQ
=¦Ë
AB
£¿Çë¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÈôË«ÇúÏߵĶԳÆÖáΪ×ø±êÖᣬʵÖ᳤ÓëÐéÖ᳤µÄºÍΪ14£¬½¹¾àΪ10£¬Ôò½¹µãÔÚxÖáÉϵÄË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®
x2
9
+
y2
16
=1
B£®
x2
25
+
y2
16
=1
C£®
x2
9
-
y2
16
=1
»ò
x2
16
-
y2
9
=1
D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸