精英家教网 > 高中数学 > 题目详情
(Ⅰ)求经过点(-
3
2
5
2
),且与椭圆9x2+5y2=45有共同焦点的椭圆方程;
(Ⅱ)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P(3,0)在该椭圆上,求椭圆的方程.
(1)椭圆9x2+5y2=45化成标准方程,得
x2
5
+
y2
9
=1

∴椭圆的焦点在y轴,且c2=9-5=4,得c=2,焦点为(0,±2).
∵所求椭圆经过点(-
3
2
5
2
),且与已知椭圆有共同的焦点,
∴设椭圆方程为
y2
a2
+
x2
b2
=1
(a>b>0),
可得
a2-b2=4
25
4
a2
+
9
4
b2
=1
,解之得a2=10,b2=6,
∴所求的椭圆方程为
y2
10
+
x2
6
=1

(2)设椭圆方程为Ax2+By2=1(A>0,B>0,A≠B).
∵点P(3,0)在该椭圆上,∴9A=1,即A=
1
9

又a=3b,∴B=1或
1
81

∴椭圆的方程为
x2
9
+y2=1
y2
81
+
x2
9
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点A、B的坐标分别是.直线相交于点M,且它们的斜率之积为-2.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)若过点的直线交动点M的轨迹于CD两点, 且N为线段CD的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(B题)已知圆C的方程为(x-1)2+y2=9,点p为圆上一动点,定点A(-1,0),线段AP的垂直平分线与直线CP交于点M,则为点M的轨迹为(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点坐标是(-2,0)、(2,0),且短轴长为2
6
的椭圆方程是(  )
A.
x2
9
+
y2
6
=1
B.
y2
9
+
x2
6
=1
C.
x2
10
+
y2
6
=1
D.
y2
10
+
x2
6
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若动点P(x,y)满足
x2+(y-3)2
+
x2+(y+3)2
=10
,则点P的轨迹是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知椭圆A,B,C是长轴长为4的椭圆上三点,点A是长轴的一个端点,BC过椭圆的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求椭圆的标准方程;
(Ⅱ)如果椭圆上两点P,Q使得直线CP,CQ与x轴围成底边在x轴上的等腰三角形,是否总存在实数λ使
PQ
AB
?请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点P(2,1)
,离心率e=
3
2
,则椭圆的方程是(  )
A.
x2
6
+
y2
3
=1
B.
x2
4
+y2=1
C.
x2
8
+
y2
2
=1
D.
x2
16
+
y2
8
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知θ∈(0°,90°],则方程x2+y2sinθ=1表示的平面图形是(  )
A.圆B.椭圆C.双曲线D.圆或椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1F2为椭圆
x2
25
+
y2
16
=1的左右焦点,过F1的直线交椭圆于A,B两点
,则△ABF2的周长为(  )
A.28B.26C.22D.20

查看答案和解析>>

同步练习册答案