精英家教网 > 高中数学 > 题目详情
20.等差数列{an}中,a4=6,则2a1-a5+a11=12.

分析 利用等差数列的定义计算即可.

解答 解:等差数列{an}中,a4=6,
∴a1+3d=6,
则2a1-a5+a11=2a1-(a1+4d)+a1+10d=2(a1+3d)=12.
故填12.

点评 本题主要考查等差数列的定义与基本计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,在平面直角坐标系xoy中,圆x2+y2=r2(r>0)内切于正方形ABCD,任取圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{1}{4}$是m2,n2的等差中项,现有一椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)内切于矩形ABCD,任取椭圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则m2,n2的等差中项为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=-$\frac{1}{2}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有(  )个.
A.78B.102C.114D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“>”:已知M(x1,y1)和N(x2,y2),M>N,当且仅当“x1>x2”或“x1=x2且y1>y2”.定义两点的“⊕”与“?”运算如下:M⊕N=(x1+x2,y1+y2),M?N=x1x2+y1y2则下面四个命题:
①已知P(2015,2014)和Q(2014,2015),则P>Q;
②已知P(2015,2014)和Q(x,y),若P>Q,则x≤2015,且y≤2014;
③已知P>Q,Q>M,则P>M;
④已知P>Q,则对任意的点M,都有P⊕M>Q⊕M;
⑤已知P>Q,则对任意的点M,都有P?M>Q?M
其中真命题的序号为①③④(把真命题的序号全部写出)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx,$\begin{array}{l}{\;}{g(x)=({2-a})({x-1})-2f(x)}\end{array}$.
(Ⅰ)当a=1时,求函数g(x)的单调区间;
(Ⅱ)若对任意$x∈({0,\frac{1}{2}}),g(x)>0$恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB是圆O的一条切线,切点为B,ADE,CFD,CGE都是圆O的割线,已知AC=AB.
(Ⅰ)证明:∠CEA=∠DCA;    
(Ⅱ)证明:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=θ,且θ∈(0,π)(如图2所示).

(Ⅰ)求证:平面ABD⊥平面BDC;
(Ⅱ)若θ=90°,当BD的长为多少时,三棱锥A-BCD的体积最大;并求出其体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$-x)dx=-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案