精英家教网 > 高中数学 > 题目详情
已知在三棱锥A-BCD中,AC=
2
,其余各棱长均为1,则二面角A-CD-B的余弦值为
 
考点:二面角的平面角及求法
专题:空间角
分析:先作出二面角A-CD-B的平面角,再利用余弦定理求解即可.
解答: 解:由已知可得AD⊥DC
又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD
在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A-CD-B的平面角
∵EF=
1
2
(三角形ACD的中位线),BE=
3
2
(正三角形BCD的高),BF=
2
2
(等腰RT三角形ABC,F是斜边中点)
∴cos∠BEF=
EF2+BE2-BF2
2×BE×EF
=
1
4
+
3
4
-
1
2
3
2
×
1
2
=
3
3

故答案为:
3
3
点评:本题考查二面角的平面角,考查余弦定理,正确作出二面角的平面角是关键.考查转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=ex+ae-x(a∈R,x∈R).
(1)讨论函数g(x)=xf(x)的奇偶性;
(2)若g(x)是偶函数,解不等式f(x2-2)≤f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两顶点A、B分别是双曲线2x2-2y2=1的左、右焦点,且sinC是sinA,sinB的等差中项.
(1)求顶点C的轨迹T的方程;
(2)设P(-2,0),过点E(-
2
7
,0)作直线l交轨迹T于M、N两点,问∠MPN的大小是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为1,点M为D1C1上的点,且D1M:MC1=3:1,则CM和平面AB1D1所成角的大小是θ,则sinθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=
b2
a
与椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q两点,F是C的右焦点,若|PQ|=2|FQ|,则C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前m项为bn=
第n天的利润
前n天投入的资金总和
(b3=
a3
38+a1+a2
.),若对任意正整数b1,b2,有n(其中bn为常数,n=1且b1=
1
38
),则称数列n=2是以m为周期,以q为周期公比的似周期性等比数列.已知似周期性等比数列{bn}的前7项为1,1,1,1,1,1,2,周期为7,周期公比为3,则数列{bn}前7k+1项的和等于
 
.(k为正整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)对定义域的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.给出以下命题:
①y=
1
x2
是“依赖函数”;
②y=
2
+sinx,x∈[-
π
2
π
2
]
是“依赖函数”;
③y=2x是“依赖函数”;④y=lnx是“依赖函数”;
⑤y=f(x),y=g(x)都是“依赖函数”,且定义域相同,则y=f(x).g(x)是“依赖函数”.
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为:
x2
64
+
y2
100
=1,上、下焦点分别为F1、F2;若CD为过左焦点F1的弦,则△F2CD的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是空间两两垂直且长度相等的基底,
m
=a+b,
n
=b-c,则
m
n
的夹角为
 

查看答案和解析>>

同步练习册答案