精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=2,an+1=an+
2
n(n+1)
(n∈N+),则{an}通项公式为
an=4-
2
n
an=4-
2
n
分析:由an+1=an+
2
n(n+1)
(n∈N+),变形为an+1-an=2(
1
n
-
1
n+1
)
.利用“累加求和”即可得出.
解答:解:∵an+1=an+
2
n(n+1)
(n∈N+),∴an+1-an=2(
1
n
-
1
n+1
)

∴an=(an-an-1)+(an-1-an)+…+(a2-a1)+a1
=2[(
1
n-1
-
1
n
)+(
1
n-2
-
1
n-1
)+
…+(1-
1
2
)]
+2
=2(1-
1
n
)
+2
=4-
2
n

故答案为an=4-
2
n
点评:本题考查了利用“累加求和”求数列的通项公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案