精英家教网 > 高中数学 > 题目详情
9.已知x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,不等式x+y≥2m-1恒成立,则m的取值范围(  )
A.(-∞,$\frac{7}{2}$]B.(-∞,$\frac{13}{2}$]C.(-∞,$\frac{15}{2}$]D.(-∞,$\frac{17}{2}$]

分析 要使不等式x+y≥2m-1恒成立,只要求出x+y的最小值,得到关于m的不等式解之即可.

解答 解:x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,不等式x+y≥2m-1恒成立,
所以(x+y)($\frac{1}{x}$+$\frac{9}{y}$)=10+$\frac{y}{x}+\frac{9x}{y}$≥10$+2\sqrt{\frac{y}{x}×\frac{9x}{y}}$=16,
当且仅当$\frac{y}{x}=\frac{9x}{y}$时等号成立,所以2m-1≤16,解得m$≤\frac{17}{2}$;
故m的取值范围是(-$∞,\frac{17}{2}$];
故选D.

点评 本题考查了不等式恒成立问题以及利用基本不等式求最小值;解答的关键是通过基本不等式求出x+y的最小值,然后解关于m的不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列各函数中,表示同一函数的是(  )
A.y=lgx与$y=\frac{1}{2}lgx{\;}^2$B.$y=\frac{{{x^2}-1}}{x-1}$与y=x+1
C.$y=\sqrt{x^2}-1$与y=x-1D.y=x与$y={log_a}{a^x}$(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}的首项a1=1,an+1=an+2n,则a5=(  )
A.$\frac{45}{2}$B.20C.21D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=3,且2Sn=an+1+2n.
(1)求a2
(2)求数列{an}的通项公式an
(3)令bn=(2n-1)(an-1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,已知前15项的和S15=45,则a8等于 (  )
A.$\frac{45}{4}$B.6C.$\frac{45}{8}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+2,则满足$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$的n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且x>0时,f(x)=log2(x+1)+3x,则满足f(x)>-4的实数x的取值范围是(  )
A.(-2,2)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下面四个命题:
①函数f(x)=$\frac{1}{x}$单调递减区间是(-∞,0)∪(0,+∞);
②函数f(x)=$\left\{{\begin{array}{l}{\frac{4}{7}x+\frac{7}{4}}&{x≤0}\\{-{x^2}+x+2}&{x>0}\end{array}}$的最大值是$\frac{9}{4}$;
③若函数ax2+ax+2>0恒成立,则实数a的取值范围是0<a<8;
④设数集M=$\{x|m≤x≤m+\frac{3}{4}\},N=\{x|n-\frac{1}{3}≤x≤n\}$,且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么M∩N的“长度”最小值是$\frac{1}{12}$.其中正确命题的序号是②④(写出你认为正确命题的所有序号)

查看答案和解析>>

同步练习册答案