【题目】设集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.
【答案】
(1)解:集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2},
若A∩B=,则
即 ,解得:0≤a≤1,
实数a的取值范围时[0,1]
(2)解:∵若A∪B=B,∴AB
则a+1≤﹣1或a﹣1≥2,
解得:a≤﹣2或a≥3,
则实数a的取值范围为(﹣∞,﹣2]∪[3,+∞).
【解析】1、由题意可得,当A∩B=,利用不等式的解集关系可得0≤a≤1。
2、由题意可得,当A∪B=B即得AB,再利用不等式解集的关系可得a≤﹣2或a≥3.
【考点精析】通过灵活运用集合的交集运算,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立即可以解答此题.
科目:高中数学 来源: 题型:
【题目】一个生物研究性学习小组,为了研究平均气温与一天内某豆类胚芽生长之间的关系,他们分别记录了4月6日至4月11日的平均气温x(℃)与该豆类胚芽一天生长的长度y(mm),得到如下数据:
日期 | 4月6日 | 4月7日 | 4月8日 | 4月9日 | 4月10日 | 4月11日 |
平均气温x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
一天生长的长度y(mm) | 22 | 25 | 29 | 26 | 16 | 12 |
该小组的研究方案是:先从这六组数据中选取6日和11日的两组数据作为检验数据,用剩下的4组数据即:7日至10日的四组数据求出线性回归方程.
(1)请按研究方案求出y关于x的线性回归方程 = x+ ;
(2)用6日和11日的两组数据作为检验数据,并判断该小组所得线性回归方程是否理想.(若由线性回归方程得到的估计数据与所选的检验数据的误差不超过1mm,则认为该方程是理想的)
参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中, = +
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点, 与 交于点P且 =x +y (x,y∈R),求x+y的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,游乐场中的摩天轮匀速逆时针旋转,每转一圈需要6min,其中心O距离地面40.5m,摩天轮的半径为40m,已知摩天轮上点P的起始位置在最低点处,在时刻t(min)时点P距离地面的高度为f(t)=Asin(ωt+φ)+h(A>0,ω>0,﹣π<φ<0,t≥0).
(Ⅰ)求f(t)的单调减区间;
(Ⅱ)求证:f(t)+f(t+2)+f(t+4)是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为 ,其离心率 ,点 为椭圆上的一个动点,△ 面积的最大值为 .
(1)求椭圆的标准方程;
(2)若 是椭圆上不重合的四个点, 与 相交于点 , 求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是 .
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com