精英家教网 > 高中数学 > 题目详情

【题目】设集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.

【答案】
(1)解:集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2},

若A∩B=,则

,解得:0≤a≤1,

实数a的取值范围时[0,1]


(2)解:∵若A∪B=B,∴AB

则a+1≤﹣1或a﹣1≥2,

解得:a≤﹣2或a≥3,

则实数a的取值范围为(﹣∞,﹣2]∪[3,+∞).


【解析】1、由题意可得,当A∩B=,利用不等式的解集关系可得0≤a≤1。
2、由题意可得,当A∪B=B即得AB,再利用不等式解集的关系可得a≤﹣2或a≥3.

【考点精析】通过灵活运用集合的交集运算,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个生物研究性学习小组,为了研究平均气温与一天内某豆类胚芽生长之间的关系,他们分别记录了4月6日至4月11日的平均气温x(℃)与该豆类胚芽一天生长的长度y(mm),得到如下数据:

日期

4月6日

4月7日

4月8日

4月9日

4月10日

4月11日

平均气温x(℃)

10

11

13

12

8

6

一天生长的长度y(mm)

22

25

29

26

16

12

该小组的研究方案是:先从这六组数据中选取6日和11日的两组数据作为检验数据,用剩下的4组数据即:7日至10日的四组数据求出线性回归方程.
(1)请按研究方案求出y关于x的线性回归方程 = x+
(2)用6日和11日的两组数据作为检验数据,并判断该小组所得线性回归方程是否理想.(若由线性回归方程得到的估计数据与所选的检验数据的误差不超过1mm,则认为该方程是理想的)
参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中, = +
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点, 交于点P且 =x +y (x,y∈R),求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln|x﹣1|+2cosπx(﹣2≤x≤4)的所有零点之和等于( )
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,游乐场中的摩天轮匀速逆时针旋转,每转一圈需要6min,其中心O距离地面40.5m,摩天轮的半径为40m,已知摩天轮上点P的起始位置在最低点处,在时刻t(min)时点P距离地面的高度为f(t)=Asin(ωt+φ)+h(A>0,ω>0,﹣π<φ<0,t≥0).
(Ⅰ)求f(t)的单调减区间;
(Ⅱ)求证:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知| |= ,| |=2,向量 的夹角为150°.
(1)求:| ﹣2 |;
(2)若( +3λ )⊥( ),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,其离心率 ,点 为椭圆上的一个动点,△ 面积的最大值为 .
(1)求椭圆的标准方程;
(2)若 是椭圆上不重合的四个点, 相交于点 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为

查看答案和解析>>

同步练习册答案