精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为

【答案】(0,2)
【解析】解:设g(x)=f(x)﹣ x,

∵f′(x)<

∴g′(x)=f′(x)﹣ <0,

∴g(x)为减函数,又f(1)=1,

∴f(log2x)> = log2x+

即g(log2x)=f(log2x)﹣ log2x> =g(1)=f(1)﹣ =g(log22),

∴log2x<log22,又y=log2x为底数是2的增函数,

∴0<x<2,

则不等式f(log2x)> 的解集为(0,2).

所以答案是:(0,2)

【考点精析】认真审题,首先需要了解对数函数的单调性与特殊点(过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是圆C:x2+y2+ax+4y+10=0上任意一点,点A关于直线x+2y-1=0的对称点也在圆C上,则实数a的值为( )
A.10
B.-10
C.-4
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AD=DC= ,AB=PA=2 ,且E为线段PB上的一动点.
(1)若E为线段PB的中点,求证:CE∥平面PAD;
(2)当直线CE与平面PAC所成角小于 ,求PE长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a,第二次被抽到的可能性为b,则( )
A.a= ,b=
B.a= ,b=
C.a= ,b=
D.a= ,b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线 的方程为 .
(1)若 在两坐标轴上的截距相等,求 的方程;
(2)若 不经过第二象限,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,直线 .
(1)若直线 与圆 交于不同的两点 ,当 时,求 的值;
(2)若 是直线 上的动点,过 作圆 的两条切线 ,切点为 ,探究:直线 是否过定点?若过定点则求出该定点,若不存在则说明理由;
(3)若 为圆 的两条相互垂直的弦,垂足为 ,求四边形 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的函数y=(m+6)x2+2(m﹣1)x+m+1恒有零点.
(1)求m的范围;
(2)若函数有两个不同零点,且其倒数之和为﹣4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ﹣3lnx(a∈R).
(1)若x=3是f(x)的一个极值点,求a值及f(x)的单调区间;
(2)当a=﹣2时,求f(x)在区间[1,e]上的最值.

查看答案和解析>>

同步练习册答案