精英家教网 > 高中数学 > 题目详情

【题目】已知点A是圆C:x2+y2+ax+4y+10=0上任意一点,点A关于直线x+2y-1=0的对称点也在圆C上,则实数a的值为( )
A.10
B.-10
C.-4
D.4

【答案】B
【解析】通过配方可得圆C的标准方程为(x+ 2+(y+2)2 ,由题意,可知直线x+2y-1=0过圆心C(- ,-2),∴- -4-1=0,∴a=-10.又a=-10时, >0,∴a的值为-10,
所以答案是:B.
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程,以及对圆的一般方程的理解,了解圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中, = +
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点, 交于点P且 =x +y (x,y∈R),求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,其离心率 ,点 为椭圆上的一个动点,△ 面积的最大值为 .
(1)求椭圆的标准方程;
(2)若 是椭圆上不重合的四个点, 相交于点 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆O的周长和面积同时等分成两部分的函数称为圆煌一个“太极函数”下列有关说法中:
①对圆O:x2+y2=1的所有非常数函数的太极函数中,一定不能为偶函数;
②函数f(x)=sinx+1是圆O:x2+(y﹣1)2=1的一个太极函数;
③存在圆O,使得f(x)= 是圆O的太极函数;
④直线(m+1)x﹣(2m+1)y﹣1=0所对应的函数一定是圆O:(x﹣2)2+(y﹣1)2=R2(R>0)的太极函数.
所有正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为正方形的四棱锥S﹣ABCD,且SD⊥平面ABCD,SD= ,AB=1,线段SB上一M点满足 = ,N为线段CD的中点,P为四棱锥S﹣ABCD表面上一点,且DM⊥PN,则点P形成的轨迹的长度为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 : x2+y2+Dx+Ey+3=0 ,圆 关于直线 x+y-1=0对称,圆心在第二象限,半径为
(1)求圆 的方程;
(2)已知不过原点的直线 l 与圆 相切,且在 轴、 轴上的截距相等,求直线 l 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x4﹣2x3 , g(x)=﹣4x2+4x﹣2,x∈R.
(1)求f(x)的最小值;
(2)证明:f(x)>g(x).

查看答案和解析>>

同步练习册答案