精英家教网 > 高中数学 > 题目详情

(本题满分12分)设函数..
(Ⅰ)时,求的单调区间;
(Ⅱ)当时,设的最小值为,若恒成立,求实数t的取值范围.

(Ⅰ) 当时,增区间为 ,减区间为 (Ⅱ)

解析试题分析:(Ⅰ)解:,                        ……1分
时,,解的增区间为
的减区间为.                                         ……4分
(Ⅱ)解:若,由,由
所以函数的减区间为,增区间为
,                                          ……6分
因为,所以
,则恒成立,
由于
时,,故函数上是减函数,
所以成立;                                                   ……10分
时,若,故函数上是增函数,
即对时,,与题意不符;
综上,为所求.                                                        ……12分
考点:本小题主要考查利用导数求函数的单调区间、求函数的最值以及恒成立问题的求解,考查学生分类讨论思想的应用和运算求解能力.
点评:考查函数时,不论考查函数的什么性质,先考查函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)求曲线处的切线方程。
(II)设如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)设函数
(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若a>0,求函数的最小值;
(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
求下列函数的导数
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
(Ⅱ)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设a为实数,函数
(I)求的单调区间与极值;
(II)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分) 
求下列函数导数
(1)  f(x)= (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.  

查看答案和解析>>

同步练习册答案