精英家教网 > 高中数学 > 题目详情

设函数
(1)若a>0,求函数的最小值;
(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。

(1)  (2)

解析试题分析:





于是成立。
设事件A:“恒成立”,则
基本事件总数为12个,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);
事件A包含事件:(1,2),(1,3);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5)共10个
由古典概型得
考点:基本不等式;古典概型。
点评:本题考查用列举法计算基本事件数及随机事件发生的概率,解题的关键是熟练运用分类列举的方法及事件的性质将所有的基本事件一一列举出来,运用公式求出概率,注意列举时要不重不漏。列举法求概率适合基本事件数不太多的概率求解问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数是实数集R上的奇函数,且在R上为增函数。
(Ⅰ)求的值;
(Ⅱ)求恒成立时的实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
(Ⅰ)已知 , 求
(Ⅱ)已知 , 求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数=为自然对数的底数),,记
(1)的导函数,判断函数的单调性,并加以证明;
(2)若函数=0有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分18分)已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在)上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数..
(Ⅰ)时,求的单调区间;
(Ⅱ)当时,设的最小值为,若恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数
(1)若x=2是函数f(x)的极值点,求实数a的值.
(2)若函数上是增函数,求实数的取值范围;
(3)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数的图象过点,且在点处的切线方程为
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.

查看答案和解析>>

同步练习册答案