精英家教网 > 高中数学 > 题目详情

设函数=为自然对数的底数),,记
(1)的导函数,判断函数的单调性,并加以证明;
(2)若函数=0有两个零点,求实数的取值范围.

(1)上单调递增.(2)实数a的取值范围是(0,2)。

解析试题分析:(1),∴
,则
上单调递增,即上单调递增.
(2)由(1)知上单调递增,而
有唯一解
的变化情况如下表所示:

x

0



0


递减
极小值
递增
 
又∵函数有两个零点,
∴方程有两个根,即方程有两个根 

解得
所以,若函数有两个零点,实数a的取值范围是(0,2)
考点:本题主要考查了导数的运算,导数在函数单调性中的应用,函数零点。
点评:中档题,利用导数研究函数单调区间,进一步判断函数零点情况,提供了解答此类问题的一般方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

f(x)=a ln xx+1,其中a∈R,曲线yf(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当a=1时,求函数在区间上的最小值和最大值;
(Ⅱ)若函数在区间上是增函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数.
(Ⅰ)若曲线在点处与直线相切,求的值;
(Ⅱ)求函数的极值点与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)设函数
(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)设    
(1)讨论函数  的单调性。
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若a>0,求函数的最小值;
(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
(Ⅱ)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,曲线过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直。
①求a,b的值;
②求该函数的单调区间和极值。
③若函数在上是增函数,求m的取值范围.

查看答案和解析>>

同步练习册答案