分析 (1)求出函数的导数,求出极值点,判断函数的单调性,即可求解函数的极值.
(2)f(x)+g(x)≥-x3+(a+2)x化为a(lnx-x)≥2x-x2,通过y=lnx-x,判断函数是减函数,说明lnx-x<0,得到$a≤\frac{{{x^2}-2x}}{x-lnx}$,设$φ(x)=\frac{{{x^2}-2x}}{x-lnx}$,求出导数,构造函数h(x)=x+2-2lnx,通过函数的导数求出函数的最小值,然后求解$φ(x)=\frac{{{x^2}-2x}}{x-lnx}$的最小值,推出结果.
解答 解:(1)f′(x)=-3x2+2x=0,$x=0或\frac{2}{3}$,导函数是二次函数开口向下,
f(x)在(-∞,0)函数是减函数,x∈(0,$\frac{2}{3}$)函数是增函数,x∈($\frac{2}{3}$,+∞)函数是减函数,
∴$f(x)_{极小}^{\;}=f(0)=0,f(x)_{极大}^{\;}=f(\frac{2}{3})=\frac{4}{27}$.
(2)f(x)+g(x)≥-x3+(a+2)x化为a(lnx-x)≥2x-x2
又y=lnx-x,y′=$\frac{1}{x}-1$,x∈[1,+∞),y′<0,函数是减函数,
lnx-x<ln1-1<0成立,
∴$a≤\frac{{{x^2}-2x}}{x-lnx}$,
设$φ(x)=\frac{{{x^2}-2x}}{x-lnx}$,$φ'(x)=\frac{(x-1)(x+2-2lnx)}{{{{(x-lnx)}^2}}}$,
设h(x)=x+2-2lnx,$h'(x)=1-\frac{2}{x}$,
∵h(x)在(1,2)是减函数,x∈(2,+∞)时,函数是增函数,
∴$h(x)_{min}^{\;}=h(2)=4-2ln2>0$,
∴φ'(x)≥0,∴φ(x)在[1,+∞)上是增函数,
$φ(x)_{min}^{\;}=φ(1)=-1$,
∴a≤-1
点评 本题考查函数的导数的综合应用,函数的单调性以及函数的极值,构造法的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com