精英家教网 > 高中数学 > 题目详情
设抛物线C:x2=2py(p>0),F为焦点,抛物线C上一点P(m,3)到焦点的距离是4,抛物线C的准线l与y轴的交点为H
(1)求抛物线C的方程;
(2)设M是抛物线C上一点,E(0,4),延长ME、MF分别交抛物线C于点A、B,若A、B、H三点共线,求点M的坐标.
分析:(1)由抛物线的定义,结合P到焦点的距离为4建立关于p的方程,解出p=2即得抛物线C方程;
(2)设M(t,
t2
4
),由点斜式可写出直线MF、ME的方程,分别与抛物线方程联立可解出点B、点A的坐标,根据A、B、H三点共线,得kAH=kBH,由此可解出t值;
解答:解:(1)由题意得抛物线C的准线l方程为:y=-
p
2

因为抛物线C上的点P(m,3)到焦点的距离是4,得3-(-
p
2
)=4,解得P=2
所以抛物线方程为:x2=4y.
(2)设M(t,
t2
4
),又直线过点F(0,1),则直线MF方程为y-1=
t2-4
4t
x

过点E(0,4)直线ME方程为y-4=
t2-16
4t
x,
y-1=
t2-4
4t
x
x2=4y
,得B(-
4
t
4
t2
),
y-4=
t2-16
4t
x
x2=4y
,得A(-
16
t
64
t2
),
则kAH=
64
t2
+1
-
16
t
=
64+t2
-16t
,kBH=
-
4
t2
+1
-
4
t
=
4+t2
-4t

∵A、B、H三点共线,∴kAH=kBH,即
64+t2
-16t
=
4+t2
-4t
解得t=±4,
∴M点的坐标为(±4,4).
点评:本题主要考查了抛物线的简单性质,考查抛物线的标准方程,考查直线与抛物线的位置关系,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黑龙江)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为4
2
;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:x2=2py(p>0),过它的焦点F且斜率为1的直线与抛物线C相交于A,B两点,已知|AB|=2.
(1)求抛物线C的方程;
(2)已知t是一个负实数,P是直线y=t上一点,过P作直线l1与l2,使l1⊥l2,若对任意的点P,总存在这样的直线l1与l2,使l1,l2与抛物线均有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:x2=2py(p>0)的焦点为F,A(x0,y0)(x0≠0)是抛物线C上的一定点.
(1)已知直线l过抛物线C的焦点F,且与C的对称轴垂直,l与C交于Q,R两点,S为C的准线上一点,若△QRS的面积为4,求p的值;
(2)过点A作倾斜角互补的两条直线AM,AN,与抛物线C的交点分别为M(x1,y1),N(x2,y2).若直线AM,AN的斜率都存在,证明:直线MN的斜率等于抛物线C在点A关于对称轴的对称点A1处的切线的斜率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市海珠区高三(上)数学综合测试1(理科)(解析版) 题型:解答题

设抛物线C:x2=2py(p>0)的焦点为F,A(x,y)(x≠0)是抛物线C上的一定点.
(1)已知直线l过抛物线C的焦点F,且与C的对称轴垂直,l与C交于Q,R两点,S为C的准线上一点,若△QRS的面积为4,求p的值;
(2)过点A作倾斜角互补的两条直线AM,AN,与抛物线C的交点分别为M(x1,y1),N(x2,y2).若直线AM,AN的斜率都存在,证明:直线MN的斜率等于抛物线C在点A关于对称轴的对称点A1处的切线的斜率.

查看答案和解析>>

同步练习册答案