精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的公差不为0,其前项和为,且成等比数列.

1)求数列的通项公式及的最小值;

2)若数列是等差数列,且,求的值.

【答案】11;(20-1.

【解析】

1)设的公差为 表示,再由等比数列的定义,建立关于的方程,求出配方,即可求出的最小值;

2)由(1)求出,先由成等差数列,求出,进而求出通项,再判断是否为等差数列.

1)设等差数列的公差为

因为成等比数列,所以

所以,即,结合可得

所以

所以

所以当时,取得最小值,最小值为.

2)由(1)知,所以

因为为等差数列,所以

所以

化简可得,解得

时,,此时数列是等差数列,满足题意;

时,,此时数列是等差数列,满足题意;

综上,-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点MN的极坐标分别为(20),(),圆C的参数方程θ为参数).

(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;

(Ⅱ)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中.

1)求这300名玩家测评分数的平均数;

2)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为,且每款游戏之间改进与否相互独立.

i)对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;

ii)每款游戏聘请专家测试的费用均为300/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和焦点为F的抛物线上一点,M上,当点M时,取得最小值,当点M时,取得最大值,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,

(1)求证:平面ABCD

(2),点FEC上,且满足EF=2FC,求二面角FADC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九世纪末:法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”“随机端点”“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设为圆上一个定点,在圆周上随机取一点,连接,所得弦长大于圆的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有限项的、正整数的递增数列,并满足如下条件:对任意不大于各项总和的正整数,总存在一个子列,使得该子列所有项的和恰好等于.这里的‘子列’是指由原数列中的一部分项(包括一项、所有项)组成的新数列.

1)写出的值;

2)“成等差数列”的充要条件是“各项总和恰好是其项数、项数平方值的等差中项”.为什么?请说明理由.

3)若,写出“项数最少时,中的最大项”的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双十一购物狂欢节,源于淘宝商城(天猫)日举办的网络促销活动,目前已成为中国电子商务行业的年度盛事,某商家为了解“双十一”这一天网购者在其网店一次性购物情况,从这一天交易成功的所有订单里随机抽取了份,按购物金额(单位:元)进行统计,得到如下频率分布直方图(同一组中的数据用该组区间的中点值做代表计算).

1)求的值;

2)试估计购物金额的平均数;

3)若该商家制订了两种不同的促销方案:

方案一:全场商品打八折;

方案二:全场商品优惠如下表:

购物金额范围

商家优惠(元)

如果你是购物者,你认为哪种方案优惠力度更大?

查看答案和解析>>

同步练习册答案