精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数f (x)是正比例函数,函数g (x)是反比例函数,且f(1)=1,g(1)=2,
(1)求函数f (x)和g(x);
(2)判断函数f (x)+g(x)的奇偶性.
(3)求函数f (x)+g(x)在(0,]上的最小值.
(1) f(x)=x,g(x)=.(2)函数f(x)+g(x)是奇函数.
(3)函数f(x)+g(x)在(0,]上的最小值是2.
本试题主要是考查了函数的奇偶性和函数的解析式以及函数的最值的综合运用。
(1)设f(x)=k1x,g(x)=,其中k1k2≠0然后结合已知中点的坐标的,饿到结论。
(2)设h(x)=f(x)+g(x),则h(x)=x+
∴函数h(x)的定义域是(-∞,0)∪(0,+∞).
∵h(-x)=-x+=-(x+)=-h(x)得到证明。
(3)由(2)知h(x)=x+,设x1,x2是(0,]上的任意两个实数,且x1<x2,,然后运用定义法得到单调性,确定最值。
解:(1)设f(x)=k1x,g(x)=,其中k1k2≠0.
∵f(1)=1,g(1)=2,∴k1×1=1,=2.
∴k1=1,k2=2.∴f(x)=x,g(x)=.
(2)设h(x)=f(x)+g(x),则h(x)=x+
∴函数h(x)的定义域是(-∞,0)∪(0,+∞).
∵h(-x)=-x+=-(x+)=-h(x),
∴函数h(x)是奇函数,即函数f(x)+g(x)是奇函数.
(3)由(2)知h(x)=x+,设x1,x2是(0,]上的任意两个实数,且x1<x2
则h(x1)-h(x2)=(x1)-(x2)=(x1-x2)+()
=(x1-x2)(1-)=
∵x1,x2∈(0,],且x1<x2,∴x1-x2<0,0<x1x2<2.
∴x1x2-2<0,(x1-x2)(x1x2-2)>0.
∴h(x1)>h(x2).
∴函数h(x)在(0,]上是减函数,函数h(x)在(0,]上的最小值是h()=2.
即函数f(x)+g(x)在(0,]上的最小值是2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)判断的奇偶性;
(Ⅱ)设函数在区间上的最小值为,求的表达式;
(Ⅲ)若,证明:方程有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在其定义域是减函数的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.设a=,则大小关系是__  _ __

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是R上的偶函数,且在[0,+∞)上单调递增,若a<b<0,则(   )
A.f(a)<f(b)B.f(a)>f(b)
C.f(a)=f(b)D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数x,y满足,则(   )
A.0B.1C.-2D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数 
(1)判断函数的奇偶性和单调性;
(2)当时,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是偶函数,又是区间上的增函数的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则使为奇函数且在单调递减的的值的个数是(  )
A.1B.2 C.3D.4

查看答案和解析>>

同步练习册答案