精英家教网 > 高中数学 > 题目详情
11.(3+4i)(-2-3i)=6-17i.

分析 直接利用复数代数形式的乘法运算化简得答案.

解答 解:(3+4i)(-2-3i)=-6+12-8i-6i=6-17i.
故答案为:6-17i.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.己知α是第三象限的角,且tanα=6,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(1)将C的方程化为普通方程;
(2)若点P(x,y)是曲线C上的动点,求3x+4y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设M是椭圆$\frac{{x}^{2}}{4}$+y2=1上的点,过M作x轴的垂线l,垂足为N,P为直线l上一点,且$\overrightarrow{PN}$=2$\overrightarrow{MN}$,当点M在椭圆上运动时,记点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设椭圆的右焦点为F,上顶点为A,求$\overrightarrow{AP}$$•\overrightarrow{FP}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.使函数f(x)=|x|与g(x)=-x2+2x都是增函数的区间可以是(  )
A.[0,1]B.(-∞,1]C.(-∞,0]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=|ex-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线互相垂直,则实数a的取值范围是(-$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在棱长为1的ABCD-A1B1C1D1中,E,F分别是AB,BC的中点,H在棱DD1上.
(1)当H是DD1的中点时,求二面角H-A1C1-E的余弦值;
(2)若直线A1H与平面A1C1FE所成的角的正弦值为$\frac{3\sqrt{17}}{17}$,求DH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(全省班做)《中华人民共和国个人所得税》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过1500元的部分3
超过1500元至4500元的部分10
超过4500元至9000元的部分20
某人一月份的工资为8660元,那么他当月应缴纳的个人所得税是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则抛物线的焦点为(1,0).

查看答案和解析>>

同步练习册答案