精英家教网 > 高中数学 > 题目详情
(本小题满分16分)(理科做)在如图所示的几何体中,平面平面的中点.建立适当的空间直角坐标系,解决下列问题:

⑴求证:
⑵求与平面所成角的大小.
⑴分别以所在直线为轴,过点且与平面  垂直的直线为轴,建立如图所示的空间直角坐标系.…………………………………………2分

,则
所以,………4分
所以
所以.…………………………8分
,设平面的法向量
则有,则,…………………12分
,…………………14分
所以,直线与平面所成的角为.…………………………………16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为

(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,是棱的中点,在棱上.
,若二面角的余弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱中,△为等腰直角三角形,∠=90°,且分别为的中点.

(1)求证:∥平面
(2)求证:⊥平面
(3)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在底面为直角梯形的四棱锥平面

⑴求证:
⑵求直线与平面所成的角;
⑶设点在棱上,,若∥平面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在空间四边形ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD和BE所成的角为,求BD的长度.(15分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱柱中,底面边长为,侧棱长为4,E,F分别为棱AB,CD的中点,.则三棱锥的体积V(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间四面体的每条边都等于1,点分别是的中点,则等于   (       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体的棱长为2,分别是上的动点,且,确定的位置,使

查看答案和解析>>

同步练习册答案