精英家教网 > 高中数学 > 题目详情
18.已知:圆x2+y2+2x+2y-8=0与x2+y2-2x+10y-24=0交于A,B两点.
(1)求公共弦AB所在的直线方程;
(2)求过A,B点且圆心在直线x+y=0上的圆的方程.

分析 (1)由两圆方程相减即得公共弦AB所在的直线方程;
(2)求出过C1,C2的直线与直线y=-x的交点,可得圆心坐标,求出圆心到AB的距离,可得半径,从而可得圆的方程.

解答 解:(1)由两圆方程相减即得x-2y+4=0,此为公共弦AB所在的直线方程;
(2)圆心C2(1,-5),过C1,C2的直线方程为$\frac{y+1}{-5+1}=\frac{x+1}{1+1}$,即2x+y+3=0.
由$\left\{\begin{array}{l}{2x+y+3=0}\\{x+y=0}\end{array}\right.$得所求圆的圆心为(-3,3),
它到AB的距离为d=$\frac{|-3-6+4|}{\sqrt{5}}$=$\sqrt{5}$,
∴所求圆的半径为$\sqrt{5+5}$=$\sqrt{10}$,
∴所求圆的方程为(x+3)2+(y-3)2=10.

点评 本题考查圆与圆的位置关系,考查圆的方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)的图象如图所示.
(1)写出该函数的定义域与值域;
(2)写出该函数的最大值与最小值;
(3)写出该函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是(  )
A.0.128B.0.096C.0.104D.0.384

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a为实数,0<a<1,函数f(x)在0≤x≤y≤1时,有f(0)=0,f(1)=1,f($\frac{x+y}{2}$)=(1-a)f(x)+af(y)
(1)求a的值;
(2)求f($\frac{1}{7}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若某几何体的三视图 (单位:cm) 如图所示,则此几何体的表面积是(cm2)(  )
A.2$\sqrt{13}$π+6B.2π+6C.$6+(2\sqrt{13}+2)π$D.$6+(\sqrt{13}+2)π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.假设洗小水壶需一分钟,烧开水需15分钟,洗茶杯需3分钟,取放茶叶需2分钟,泡茶需1分钟则上述“喝茶问题”中至少需多少分钟才可以喝上茶?(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}sin2x-2{sin^2}$x+2,x∈R
(1)函数f(x)可有函数y=sinx做怎样的变换而得到;
(2)在给定的坐标系中,画出函数y=f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现有如下投资方案,一年后投资盈亏的情况如下:
(1)投资股市:
投资结果获利40%不赔不赚亏损20%
概  率$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
(2)购买基金:
投资结果获利20%不赔不赚亏损10%
概  率p$\frac{1}{3}$q
(Ⅰ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于$\frac{4}{5}$,求p的取值范围;
(Ⅱ)丙要将家中闲置的20万元钱进行投资,决定在“投资股市”、“购买基金”,或“等额同时投资股市和购买基金”这三种方案中选择一种,已知$p=\frac{1}{2}$,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?(其中第三方案须考察两项获利之和的随机变量Z),给出结果并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个几何体的三视图如图所示,则该几何体的体积为8.

查看答案和解析>>

同步练习册答案