I.证明ADD1F;
II.求AE与D1F所成的角;
III.证明面AED面A1FD1;
IV.设AA1=2,求三棱锥F-A1ED1的体积
(Ⅰ)证明:∵AC1是正方体,
∴AD⊥面DC1. 又D1F面DC1, ∴AD⊥D1F. (Ⅱ)解:取AB中点G,连结A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F. 设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角. (Ⅲ)证明:由(Ⅰ)知AD⊥D1F,由(Ⅱ)知AE⊥D1F,又AD∩AE=A,所以D1F⊥面AED.又因为D1F面A1FD1,所以面AED⊥面A1FD1. (Ⅳ)解:连结GE,GD1. ∵FG∥A1D1,∴FG∥面A1ED1, ∴ ∵AA1=2, ∴正方形ABB1A1 ∴
|
科目:高中数学 来源: 题型:
1 |
h2 |
1 |
a2 |
1 |
b2 |
1 |
PO2 |
1 |
PA2 |
1 |
PB2 |
1 |
PC2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
h2 |
1 |
a2 |
1 |
b2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com