精英家教网 > 高中数学 > 题目详情
15.若直角坐标平面内两个不同点P、Q满足条件:①P、Q都在y=f(x)上;②P、Q关于原点对称.则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的友好点对有(  )
A.0对B.1对C.2对D.3对

分析 根据题意可知只须作出函数y=$(\frac{1}{2})^{x}$(x>0)的图象关于原点对称的图象,确定它与函数y=-x2-4x(x≤0)交点个数即可.

解答 解:由题意得:函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,“友好点对”的对数,
等于函数(x>0)的图象关于原点对称的图象,与函数y=-x2-4x(x≤0)交点个数
在同一坐标系中做出函数y=$(\frac{1}{2})^{x}$(x>0)的图象关于原点对称的图象,与函数y=-x2-4x(x≤0)的图象如下图所示:

由图象可知,两个图象只有一个交点.
故选:B.

点评 本题考查的知识点是函数的图象,分段函数,新定义,其中将“友好点对”的对数转化为对应图象交点个数是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知集合A={-2,1,3,6},B={x|-2<x<4},则A∩B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P的坐标为(-6,3),线段PH的中点为M.
(1)求点M的轨迹方程;
(2)平面内是否存在定点A(a,b)(a≠0),使|MO|=λ|MA|(λ≠1常数),若存在,求出A的坐标及λ的值;若不存在,说明理由;
(3)若直线y=kx与M的轨迹交于B、C两点,点N(0,t)使NB⊥NC,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义域为R的奇函数f(x)满足f(4-x)+f(x)=0,当-2<x<0时,f(x)=2x,则f(log220)=(  )
A.$-\frac{5}{4}$B.$-\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|lnx|的零点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2x+2+1的图象过定点(  )
A.(1,2)B.(2,1)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若A={1,0,3},B={-1,1,2,3},则A∩B={1,3} 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2m2x2+4mx-3lnx,其中m∈R
(1)若x=1是f(x)的极值点,求m的值;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各式的值:
(1)0.64${\;}^{-\frac{1}{2}}$-(-$\frac{1}{8}$)0+8${\;}^{\frac{2}{3}}$+($\frac{9}{16}$)${\;}^{\frac{1}{2}}$
(2)lg22+lg2•lg5+lg5.

查看答案和解析>>

同步练习册答案