精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λμ=
3
16
,则该双曲线的离心率为(  )
分析:由方程可得渐近线,可得ABP的坐标,由已知向量式可得λ+μ=1,λ-μ=
b
c
,解之可得λμ的值,由λμ=
3
16
可得ac的关系,由离心率的定义可得.
解答:解:双曲线的渐近线为:y=±
b
a
x,设焦点F(c,0)则A(c,
bc
a
),B(c,-
bc
a
),P(c,
b2
a
),
OP
OA
OB
,∴(c,
b2
a
)=((λ+μ)c,(λ-μ)
bc
a
),
∴λ+μ=1,λ-μ=
b
c
,解得λ=
c+b
2c
,μ=
c-b
2c

又由λμ=
3
16
c+b
2c
×
c-b
2c
=
3
16
,解得
a2
c2
=
3
4

∴e=
c
a
=
2
3
3

故选C
点评:本题考查双曲线的简单性质,涉及双曲线的离心率的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为(  )
A、
5
4
B、5
C、
5
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线方程;
(2)直线y=kx+5(k≠0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是离心率为
5
的双曲线
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点)且|PF1|=λ|PF2|则λ的值为(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的虚轴长为2,焦距为2
5
,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的虚轴长为2,焦距为2
3
,则双曲线的渐近线方程为(  )

查看答案和解析>>

同步练习册答案