精英家教网 > 高中数学 > 题目详情
18.在锐角△ABC中,内角A,B,C分别对应的边是a,b,c.若b2-a2=ac,则$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范围是(1,$\frac{2\sqrt{3}}{3}$).

分析 根据正弦定理化简已知式子,由二倍角的余弦公式变形、和差化积公式和诱导公式化简后,由内角的范围和正弦函数的性质求出A与B关系,由锐角三角形的条件求出B的范围,利用商得关系、两角差的正弦公式化简所求的式子,由正弦函数的性质求出所求式子的取值范围.

解答 解:∵b2-a2=ac,
∴由正弦定理得,sin2B-sin2A=sinAsinC,
由二倍角公式可知:$\frac{1-cos2B}{2}$-$\frac{1-cos2A}{2}$=sinAsinC,
∴$\frac{cos2A-cos2B}{2}$=sinAsinC,
和差化积公式得cos2A-cos2B=-2sin(A+B)sin(A-B),代入上式得,
-sin(A+B)sin(A-B)=sinAsinC,
∵sin(A+B)=sinC≠0,∴-sin(A-B)=sinA,即sin(B-A)=sinA,
在△ABC中,B-A=A,得B=2A,则C=π-3A,
∵△ABC为锐角三角形,
∴$\left\{\begin{array}{l}{0<2A<\frac{π}{2}}\\{0<π-3A<\frac{π}{2}}\end{array}\right.$,
∴$\frac{π}{6}$<A<$\frac{π}{4}$,$\frac{π}{3}$<B<$\frac{π}{2}$,
$\frac{1}{tanA}$-$\frac{1}{tanB}$=$\frac{cosAsinB-sinAcosB}{sinAsinB}$=$\frac{sin(B-A)}{sinAsinB}$=$\frac{1}{sinB}$,
$\frac{π}{3}$<B<$\frac{π}{2}$,$\frac{\sqrt{3}}{2}$<sinB<1,
1<$\frac{1}{sinB}$<$\frac{2\sqrt{3}}{3}$,
$\frac{1}{tanA}$-$\frac{1}{tanB}$
1<$\frac{1}{tanA}$-$\frac{1}{tanB}$<$\frac{2\sqrt{3}}{3}$,
故答案为:(1,$\frac{2\sqrt{3}}{3}$).

点评 本题考查了正弦定理,三角恒等变换中公式,以及正弦函数的性质,涉及知识点多、公式多,综合性强,考查化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列函数中,定义域为R的是(  )
A.y=$-\frac{{\sqrt{5}}}{e^x}$B.y=$\sqrt{x+1}$C.y=lnxD.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x^2}{1-x}$(x≠1),数列{an}满足a1=m(m≠1),an+1=f(an).
(Ⅰ)当m=-1时,写出数列{an}的通项公式;
(Ⅱ)是否存在实数m,使得数列{an}是等比数列?若存在,求出所有符合要求的m的值;若不存在,请说明理由;
(Ⅲ)当0<m<$\frac{1}{2}$时,求证:$\underset{\stackrel{n}{π}}{i=1}$(ai+1+ai)<$\frac{1}{2m}$.
(其中π是求乘积符号,如$\underset{\stackrel{5}{π}}{i=1}$i=1×2×3×4×5,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列类比推理的结论不正确的是(  )
①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;
②类比“设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8成等差数列”,得到猜想“设等比数列{bn}的前n项积为Tn,则T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$成等比数列”;
③类比“平面内,同垂直于一直线的两直线相互平行”,得到猜想“空间中,同垂直于一直线的两直线相互平行”;
④类比“设AB为圆的直径,P为圆上任意一点,直线PA,PB的斜率存在,则kPA•kPB为常数”,得到猜想“设AB为椭圆的长轴,P为椭圆上任意一点,直线PA,PB的斜率存在,则kPA•kPB为常数”.
A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{2}b{x^2}$+x,(a,b∈R)
(Ⅰ)若函数f(x)在x1=1,x2=2处取得极值,求a,b的值,并说明分别取得的是极大值还是极小值;
(Ⅱ)若函数f(x)在(1,f(1))处的切线的斜率为1,存在x∈[1,e],使得f(x)-x≤(a+2)(-$\frac{1}{2}$x2+x)成立,求实数a的取值范围;
(Ⅲ) 若h(x)+x=f(x)+(1-$\frac{b}{2}$)x2,求h(x)在[1,e]上的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)的图象如图所示,f′(x)是f(x)的导函数,设a=f′(-2),b=f′(-3),c=f(-2)-f(-3),则a,b,c由小到大的关系为a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若n>0,则n+$\frac{4}{{n}^{2}}$的最小值为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在体积为$\frac{243π}{16}$同一球面上,则PA=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A,B是双曲线$\frac{{x}^{2}}{4}$-y2=1的两个顶点,点P是双曲线上异于A,B的一点,连接PO(O为坐标原点)交椭圆$\frac{{x}^{2}}{4}$+y2=1于点Q,如果设直线PA,PB,QA的斜率分别为k1,k2,k3,且k1+k2=-$\frac{15}{8}$,假设k2>0,则k3的值为2.

查看答案和解析>>

同步练习册答案