精英家教网 > 高中数学 > 题目详情
8.下列函数中,定义域为R的是(  )
A.y=$-\frac{{\sqrt{5}}}{e^x}$B.y=$\sqrt{x+1}$C.y=lnxD.y=x-1

分析 根据函数成立的条件即可求函数的定义域.

解答 解:A.函数的定义域是R,满足条件
B.要使函数有意义,则x+1≥0,得x≥-1,即函数的定义域是[-1,+∞),不满足条件.
C.要使函数有意义,则x>0,即函数的定义域是(0,+∞),不满足条件.
D.要使函数有意义,则x≠0,即函数的定义域是(-∞,0)∪(0,+∞),不满足条件.
故选:A

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的(  )
A.$\frac{3}{16}$B.$\frac{9}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z满足(1+2i)z=1-2i,则z位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若2a=5b=10,则$\frac{1}{a}$+$\frac{1}{b}$=1,lg8+2log510=$\frac{3}{a}$+2b(用a、b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为(  )
A.B.$\frac{25}{2}$πC.12πD.$\frac{41}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.实数x取什么值时,复数z=(x2+x-6)+(x2-2x-15)i是:①实数;②虚数;③纯虚数;④零.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图:在图O内切于正三角形△ABC,则S△ABC=S△OAB+S△OAC+S△OBC=3•S△OBC,即$\frac{1}{2}•|{BC}|•h=3•\frac{1}{2}•|{BC}|•r$,即h=3r,从而得到结论:“正三角形的高等于它的内切圆的半径的3倍”;类比该结论到正四面体,可得到结论:“正四面体的高等于它的内切球的半径的a倍”,则实数a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设{an},{bn}是两个等差数列,若cn=an+bn,则{cn}也是等差数列,类比上述性质,设{sn},{tn}是等比数列,则下列说法正确的是(  )
A.若rn=sn+tn,则{rn}是等比数列B.若rn=sntn,则{rn}是等比数列
C.若rn=sn-tn,则{rn}是等比数列D.以上说明均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在锐角△ABC中,内角A,B,C分别对应的边是a,b,c.若b2-a2=ac,则$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范围是(1,$\frac{2\sqrt{3}}{3}$).

查看答案和解析>>

同步练习册答案