精英家教网 > 高中数学 > 题目详情

【题目】(A)已知 ,且函数的最小正周期为.

(1)求的值;

(2)若 ,求的值.

(B)已知 ,且函数的最小正周期为.

(1)求的解析式;

(2)若关于的方程,在内有两个不同的解 ,求证: .

【答案】(A)(1);(2). (B)(1);(2)见解析.

【解析】试题分析:(A)(1)化简得,由周期为,即

(2)分析条件得 代入求解即可.

(B)(1)化简得,由周期为,即

(2)由,整理得,和联立得,有 化简求解即可.

试题解析:

(A)解:(1)

周期为,即.

(2)

,∴

,代入上式的.

(B)解:(1).

,∴ .

(2)求证: .

,∴

方程在内有两个不同的解,

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.

1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD-A1B1C1D中,S是B1D1的中点,E、F、G分别是BC、CD和SC的中点.求证:

1直线EG平面BDD1B1

2平面EFG平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线上点处的切线过点,求函数的单调减区间;

(2)若函数上无零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中生上学使用手机情况,调查者进行了如下的随机调查:调查者向被调查者提出两个问题:(1)你的学号是奇数吗?(2)你上学时是否经常带手机?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有被调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有260人回答了“是”.由此可以估计这800人中经常带手机上学的人数是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,公园有一块边长为2的等边三角形的地,现修成草坪,图中把草坪分成面积相等的两部分, 上, 上.

(1)设 ,请将表示为的函数,并求出该函数的定义域;

(2)如果是灌溉水管,为节约成本,希望它最短, 的位置应在哪里?如果是参观线路,则希望它最长, 的位置又应在哪里?请予以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某初级中学有三个年级,各年级男、女生人数如下表:

初一年级

初二年级

初三年级

女生

370

z

200

男生

380

370

300

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

1求z的值;

2用分层抽样的方法在初三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任选2名学生,求至少有1名女生的概率;

3用随机抽样的方法从初二年级女生中选出8人,测量它们的左眼视力,结果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把这8人的左眼视力看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果袋中装有数量差别很大而大小相同的白球和黄球(只是颜色不同)若干个,从中任取一球,取了10次有7个白球,估计袋中数量最多的是________球.

查看答案和解析>>

同步练习册答案