精英家教网 > 高中数学 > 题目详情
设a∈R,函数f(x)=ax2-2x-2a,若f(x)>0的解集为A,B={x|1<x<2},A∩B=∅,求实数a的取值范围.
考点:交集及其运算
专题:集合
分析:分三种情况:a=0;a>0;a<0考虑,求出a的范围即可.
解答: 解:分三种情况:
a=0时,f(x)=-2x,f(x)>0的解集为x<0,由B={x|1<x<2},得到A∩B=∅,满足题意;
a>0时,根据题意得:
f(1)≤0
f(2)≤0
,解得:0<a≤2;
a<0时,由函数f(x)=ax2-2x-2a的对称轴为直线x=
1
a
<0,得到f(1)≤0,
解得:-2≤a<0,
综上,a的范围为-2≤a≤2.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“平行四边形的对角线相等且互相平分”是(  )形式命题.
A、p∨qB、p∧q
C、¬pD、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
2
x
+alnx,a∈R,其导函数为f′(x);
(Ⅰ)当a=-4时,求f(x)的单调区间;
(Ⅱ)当a≤4时,?x1,x2∈(0,+∞),x1≠x2,求证:|f′(x1)-f′(x2)|>|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,其前n项和为Sn,{bn}是公比为q的等比数列,且a1=b1=3,a3=b2-2,S4=b3-3.
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,
1
x
+
2
y+1
=2,求2x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,其前n项和为Sn,{bn}是公比为q的等比数列,且a1=b1=3,a3=b2-2,S4=b3-3.
(1)求数列{an},{bn}的通项公式;
(2)记cn=
1
2
(an-1)•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=-
7x
x2+x+1

(1)求x<0时,f(x)的解析式;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的前n项和为Sn,公比q>0,已知S3=14,S6=126.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第4项和第16项,试求数列{bn}的通项公式及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足:
1
2
Sn=an-1(n∈N*).
(1)求{an}的通项公式;
(2)设bn=1+log2an,cn=anbn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案