精英家教网 > 高中数学 > 题目详情
6.函数f(x)=Asin(ωx+φ)满足:f($\frac{π}{3}$+x)=-f($\frac{π}{3}$-x),且f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),则ω的一个可能取值是(  )
A.2B.3C.4D.5

分析 根据题意,得出函数f(x)的图象关于($\frac{π}{3}$,0)对称,也关于x=$\frac{π}{6}$对称;
由此求出函数的周期T的可能取值,从而得出ω的可能取值.

解答 解:函数f(x)=Asin(ωx+φ)满足:f($\frac{π}{3}$+x)=-f($\frac{π}{3}$-x),
所以函数f(x)的图象关于($\frac{π}{3}$,0)对称,
又f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),
所以函数f(x)的图象关于x=$\frac{π}{6}$对称;
所以$\frac{(2k-1)T}{4}$=$\frac{π}{3}$-$\frac{π}{6}$=$\frac{π}{6}$,k为正整数,
所以T=$\frac{2π}{3(2k-1)}$,
即$\frac{2π}{ω}$=$\frac{2π}{3(2k-1)}$,
解得ω=3(2k-1),k为正整数;
当k=1时,ω=3,
所以ω的一个可能取值是3.
故选:B.

点评 本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知(2x-$\frac{1}{\sqrt{x}}$)5
(Ⅰ)求展开式中的倒数第3项;
(Ⅱ)求展开式中含$\frac{1}{x}$项的系数;
(Ⅲ)设(2x-$\frac{1}{\sqrt{x}}$)5的展开式中前三项的二项式系数之和为M,(1+ax)6的展开式中各项系数之和为N,若4M=N,求正实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图程序的输出结果为(  )
A.3,2B.3,3C.2,2D.2,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x)且有3f(x)+xf′(x)<0,则不等式(x+2016)3f(x+2016)+8f(-2)<0的解集为(  )
A.(-2018,-2016)B.(-∞,-2018)C.(-2016,-2015)D.(-∞,-2012)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图程序运行的结果是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市政府为了实施政府绩效管理、创新政府公共服务模式、提高公共服务效率.实施了“政府承诺,等你打分”民意调查活动,通过问卷调查了学生、在职人员、退休人员共250人,统计结果表不幸被污损,如表:
学生在职人员退休人员
满意78
不满意512
若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.
(Ⅰ)求满意学生的人数;
(Ⅱ)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?
(Ⅲ)若满意的在职人员为77,则从问卷调查中填写不满意的“学生和在职人员”中选出2人进行访谈,求这2人中包含了两类人员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知半径为1的圆O1是半径为R的球O的一个截面,若球面上任一点到圆面O1的距离的最大值为$\frac{3R}{2}$,则球O的表面积为$\frac{16π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设甲、乙、丙三个乒乓球协会的分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为A1,A2,A3,乙协会编号为A4,丙协会编号分别为A5,A6,若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,根据图中数据,该几何体的体积是(  )
A.$\frac{10}{3}π$B.C.D.$(6+\sqrt{2}π)$

查看答案和解析>>

同步练习册答案