精英家教网 > 高中数学 > 题目详情
14.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x)且有3f(x)+xf′(x)<0,则不等式(x+2016)3f(x+2016)+8f(-2)<0的解集为(  )
A.(-2018,-2016)B.(-∞,-2018)C.(-2016,-2015)D.(-∞,-2012)

分析 根据条件,构造函数g(x)=x3f(x),利用函数的单调性和导数之间的关系即可判断出该函数在(-∞,0)上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可.

解答 解:构造函数g(x)=x3f(x),g′(x)=x2(3f(x)+xf′(x));
当x<0时,
∵3f(x)+xf′(x)<0,x2>0;
∴g′(x)<0;
∴g(x)在(-∞,0)上单调递减;
g(x+2016)=(x+2016)3f(x+20165),g(-2)=-8f(-2);
∴由不等式(x+2016)3f(x+2016)+8f(-2)<0得:
(x+2016)3f(x+2016)<-8f(-2)
∴g(x+2016)<g(-2);
∴x+2016>-2,且x+2016<0;
∴-2018<x<-2016;
∴原不等式的解集为(-2018,-2016).
故选:A.

点评 本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,然后根据单调性定义将原不等式转化为一次不等式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若关于x的不等式ax2+bx+c>0的解集为{x|-2<x<1},则函数f(x)=bx2+cx+a的图象可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与60°相等的弧度数是(  )
A.60πB.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若关于x的方程:x2+4xsinθ+atanθ=0($\frac{π}{4}$<θ<$\frac{π}{2}$)有两个相等的实数根.则实数a的取值范围为(  )
A.($\sqrt{2}$,2)B.(2$\sqrt{2}$,4)C.(0,2)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了迎接珠海作为全国文明城市的复查,爱卫会随机抽取了60位路人进行问卷调查,调查项目是自己对珠海各方面卫生情况的满意度(假设被问卷的路人回答是客观的),以分数表示问卷结果,并统计他们的问卷分数,把其中不低于50分的分成五段[50,60),[60,70),…[90,100]后画出如图部分频率分布直方图,观察图形信息,回答下列问题:
(1)求出问卷调查分数低于50分的被问卷人数;
(2)估计全市市民满意度在60分及以上的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若A,B事件互斥,且有P(A)=0.1,P(B)=0.3,那么P(A∪B)=(  )
A.0.6B.0.4C.0.2D.0.03

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=Asin(ωx+φ)满足:f($\frac{π}{3}$+x)=-f($\frac{π}{3}$-x),且f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),则ω的一个可能取值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各式中,所得数值最小的是(  )
A.sin50°cos39°-sin40°cos51°B.-2sin240°+1
C.2sin6°cos6°D.$\frac{{\sqrt{3}}}{2}sin{43°}-\frac{1}{2}cos{43°}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,a1=1,a6=21,记数列{$\frac{1}{a_n}$}的前n项和为Sn,若S2n+1-Sn≤$\frac{m}{15}$对n∈N+恒成立,则正整数m的最小值为5.

查看答案和解析>>

同步练习册答案