精英家教网 > 高中数学 > 题目详情
2.在等差数列{an}中,a1=1,a6=21,记数列{$\frac{1}{a_n}$}的前n项和为Sn,若S2n+1-Sn≤$\frac{m}{15}$对n∈N+恒成立,则正整数m的最小值为5.

分析 由等差数列的通项公式求出数列{$\frac{1}{{a}_{n}}$}的通项公式,证明数列{S2n+1-Sn}(n∈N*)是递减数列,可求其最大值,进而可得m的取值范围,结合m为正整数可得.

解答 解:等差数列{an}中,a1=1,a6=21=a1+5d,∴公差 d=4,an=1+(n-1)d=4n-3,$\frac{1}{{a}_{n}}$=$\frac{1}{4n-3}$.
记数列$\{\frac{1}{a_n}\}$的前n项和为Sn,则Sn =$\frac{1}{1}$+$\frac{1}{5}$+$\frac{1}{9}$+…+$\frac{1}{4n-3}$,
∵(S2n+1-Sn)-(S2n+3-Sn+1)=($\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+…+$\frac{1}{{a}_{2n+1}}$)-($\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+3}}$)
=$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{2n+2}}$-$\frac{1}{{a}_{2n+3}}$=$\frac{1}{4n+1}$-$\frac{1}{8n+5}$-$\frac{1}{8n+9}$=($\frac{1}{8n+2}$-$\frac{1}{8n+5}$)+($\frac{1}{8n+2}$-$\frac{1}{8n+9}$)>0,
∴数列{S2n+1-Sn}(n∈N*)是递减数列,
∴数列{S2n+1-Sn}(n∈N*)的最大项为S3-S1=$\frac{1}{5}$+$\frac{1}{9}$=$\frac{14}{45}$,
∴由题意可得,只需$\frac{14}{45}$≤$\frac{m}{15}$,即 m≥$\frac{14}{3}$,又∵m是正整数,∴m的最小值为5,
故答案为:5.

点评 本题考查数列与不等式的结合,证数列{S2n+1-Sn}(n∈N*)是递减数列并求数列{S2n+1-Sn}(n∈N*)的最大值是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x)且有3f(x)+xf′(x)<0,则不等式(x+2016)3f(x+2016)+8f(-2)<0的解集为(  )
A.(-2018,-2016)B.(-∞,-2018)C.(-2016,-2015)D.(-∞,-2012)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设甲、乙、丙三个乒乓球协会的分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为A1,A2,A3,乙协会编号为A4,丙协会编号分别为A5,A6,若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足$\frac{{b}_{1}}{3}$+$\frac{{b}_{2}}{{3}^{2}}$+…+$\frac{{b}_{n}}{{3}^{n}}$=an-1(n∈N*),求数列{nbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某校为了了解学生对周末家庭作业量的态度,拟采用分层抽样的方法分别从高一、高二、高三的高中生中随机抽取一个容量为200的样本进行调查,已知从700名高一、高二学生中共抽取了140名学生,那么该校有高三学生300名.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=|lnx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点.则实数a的取值范围是($\frac{ln2}{2}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,根据图中数据,该几何体的体积是(  )
A.$\frac{10}{3}π$B.C.D.$(6+\sqrt{2}π)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有10部微电影参展,如果某部电影不亚于其他9部,就称此部电影为优秀影片,那么在这10部微电影中,最多可能有10部优秀影片.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,输出的S值为(  )
A.26B.11C.4D.1

查看答案和解析>>

同步练习册答案