分析 记这10部微电影为A1-A10,设这10部微电影为先退到两部电影的情形,若A1的点播量>A2的点播量,且A2的专家评分>A1的专家评分,则优秀影片最多可能有2部,以此类推可知:这10部微电影中,优秀影片最多可能有10部.
解答 解:记这10部微电影为A1-A10,
设这10部微电影为先退到两部电影的情形,若A1的点播量>A2的点播量,且A2的专家评分>A1的专家评分,则优秀影片最多可能有2部;
再考虑3部电影的情形,若A1的点播量>A2的点播量>A3的点播量,且A3的专家评分>A2的专家评分>A1的专家评分,则优秀影片最多可能有3部.
以此类推可知:这10部微电影中,优秀影片最多可能有10部.
故答案为:10.
点评 本题考查进行简单的合情推理,考查学生分析解决问题的能力,分析这10部微电影为先退到两部电影是关键.
科目:高中数学 来源: 题型:选择题
| A. | sin50°cos39°-sin40°cos51° | B. | -2sin240°+1 | ||
| C. | 2sin6°cos6° | D. | $\frac{{\sqrt{3}}}{2}sin{43°}-\frac{1}{2}cos{43°}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值-$\frac{3}{2}-$ln2,无最小值 | B. | 有最小值-$\frac{3}{2}$-ln2,无最大值 | ||
| C. | 无最大值也无最小值 | D. | 有最大值4ln2,且有最小值-$\frac{3}{2}$-ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小 | B. | 使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小 | ||
| C. | 使得$\sum_{i=1}^{n}$[yi2-(ai+bxi)2]最小 | D. | 使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com