精英家教网 > 高中数学 > 题目详情
11.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有10部微电影参展,如果某部电影不亚于其他9部,就称此部电影为优秀影片,那么在这10部微电影中,最多可能有10部优秀影片.

分析 记这10部微电影为A1-A10,设这10部微电影为先退到两部电影的情形,若A1的点播量>A2的点播量,且A2的专家评分>A1的专家评分,则优秀影片最多可能有2部,以此类推可知:这10部微电影中,优秀影片最多可能有10部.

解答 解:记这10部微电影为A1-A10
设这10部微电影为先退到两部电影的情形,若A1的点播量>A2的点播量,且A2的专家评分>A1的专家评分,则优秀影片最多可能有2部;
再考虑3部电影的情形,若A1的点播量>A2的点播量>A3的点播量,且A3的专家评分>A2的专家评分>A1的专家评分,则优秀影片最多可能有3部.
以此类推可知:这10部微电影中,优秀影片最多可能有10部.
故答案为:10.

点评 本题考查进行简单的合情推理,考查学生分析解决问题的能力,分析这10部微电影为先退到两部电影是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列各式中,所得数值最小的是(  )
A.sin50°cos39°-sin40°cos51°B.-2sin240°+1
C.2sin6°cos6°D.$\frac{{\sqrt{3}}}{2}sin{43°}-\frac{1}{2}cos{43°}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,a1=1,a6=21,记数列{$\frac{1}{a_n}$}的前n项和为Sn,若S2n+1-Sn≤$\frac{m}{15}$对n∈N+恒成立,则正整数m的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1、S2、S3、S4、…、Sn
①当n=2010时,求S1+S2+S3+S4+S5+…+S2010的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的右焦点F任作一条倾斜角不等于90°的直线交该椭圆于M,N两点,弦MN的垂直平分线交x轴于点P,则$\frac{{|{PF}|}}{{|{MN}|}}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2-2x+alnx存在两个极值点x1,x2(x1<x2),则t<$\frac{f({x}_{1})}{{x}_{2}}$恒成立,则t(  )
A.有最大值-$\frac{3}{2}-$ln2,无最小值B.有最小值-$\frac{3}{2}$-ln2,无最大值
C.无最大值也无最小值D.有最大值4ln2,且有最小值-$\frac{3}{2}$-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知幂函数y=(m2-m-1)x${\;}^{{m}^{2}-2m-2}$,不过原点,则幂函数为y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2)…(xn,yn),且回归直线方程为$\hat{y}$=a+bx,则最小二乘法的思想是(  )
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(5-2x)}$的定义域是[2,$\frac{5}{2}$).

查看答案和解析>>

同步练习册答案