精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=x2-2x+alnx存在两个极值点x1,x2(x1<x2),则t<$\frac{f({x}_{1})}{{x}_{2}}$恒成立,则t(  )
A.有最大值-$\frac{3}{2}-$ln2,无最小值B.有最小值-$\frac{3}{2}$-ln2,无最大值
C.无最大值也无最小值D.有最大值4ln2,且有最小值-$\frac{3}{2}$-ln2

分析 根据f(x)存在两个极值点x1,x2,且x1<x2.转化成一元二次方程2x2-2x+a=0的两个根x1,x2,且0<x1<x2,根据根与系数的关系,将x1用x2表示,求得$\frac{f({x}_{1})}{{x}_{2}}$的表达式,再求最值.

解答 解:函数f(x)的定义域为(0,+∞),
f′(x)=$2x-2+\frac{a}{x}=\frac{2{x}^{2}-2x+a}{x}$,
∵f(x)存在两个极值点x1,x2,且x1<x2
∴f′(x)=0有两个不同的根x1,x2,且0<x1<x2
∴x1,x2是一元二次方程2x2-2x+a=0的两个根,
由x1+x2=1,x1x2=$\frac{a}{2}$,则a=2x2(1-x2),
f(x1)=x12-2x1+alnx1
=(1-x2)${\;}^{{\;}^{2}}$-2(1-x2)+2x2(1-x2)ln(1-x2).$\frac{1}{2}$<x2<1,
所以$\frac{f({x}_{1})}{{x}_{{\;}_{2}}}$=x2+2(1-x2)ln(1-x2)-$\frac{1}{{x}_{2}}$.$\frac{1}{2}$<x2<1,
令g(x)=x+2(1-x)ln(1-x)-$\frac{1}{x}$,$\frac{1}{2}$<x<1,
g′(x)=1-2ln(1-x)-2+$\frac{1}{{x}^{2}}$=-1-2ln(1-x)+$\frac{1}{{x}^{2}}$>0,
所以g(x)是增函数,所以x=$\frac{1}{2}$时,g($\frac{1}{2}$)=$-\frac{3}{2}$-ln2;x→1时,g(x)→0;
所以t$≤-\frac{3}{2}$-ln2,没有最小值;
故选A.

点评 本题考查了利用导数求函数的单调区间及不等式成立的综合应用,同时考查了根与系数的关系,化简比较繁琐,注意要细心,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.半径为2的扇形,它的周长等于其所在圆的周长,则此扇形的面积为4(π-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=|lnx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点.则实数a的取值范围是($\frac{ln2}{2}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{e^x}{e^2}$,g(x)=xlnx-a(x-1).
(Ⅰ)求函数f(x)在点(4,f(4))处的切线方程;
(Ⅱ)若对任意x∈(0,+∞),不等式g(x)≥0恒成立,求实数a的取值的集合M;
(Ⅲ)当a∈M时,讨论函数h(x)=f(x)-g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有10部微电影参展,如果某部电影不亚于其他9部,就称此部电影为优秀影片,那么在这10部微电影中,最多可能有10部优秀影片.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列各选项中的对象能构成集合的是(  )
A.好教师B.未来世界的高科技产品
C.2014年巴西世界杯的参赛国D.上海世博会好看的展馆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)7展开式中,系数最大项是第5项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合M={-1,1},N={x|{x<0或x>$\frac{1}{2}}$},则下列结论正确的是(  )
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|0≤x≤6},集合B={x|x2+2x-8≤0},则A∪B=(  )
A.[0,2]B.[-4,2]C.[0,6]D.[-4,6]

查看答案和解析>>

同步练习册答案