精英家教网 > 高中数学 > 题目详情
1.下列各选项中的对象能构成集合的是(  )
A.好教师B.未来世界的高科技产品
C.2014年巴西世界杯的参赛国D.上海世博会好看的展馆

分析 分别利用集合的确定性,互异性确定各选项是否构成集合.

解答 解:A,由于好教师的标准不确定,所以元素无法确定,所以不能构成集合;
B,因为未来世界的高科技产品是不确定的,所以不能构成集合;
C,2014年巴西世界杯的参赛国是确定的、互异的,所以能构成集合;
D,由于上海世博会好看的展馆标准不确定,所以元素无法确定,所以不能构成集合;
故选:C.

点评 本题主要考查集合元素的性质,利用集合的确定性和互异性是判断集合的一种方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.把一颗骰子投掷两次,记第一次出现的点数为a,第二次出现的点数为b.已知方程组$\left\{\begin{array}{l}ax+by=2\\ 2x+y=3\end{array}\right.$.
(Ⅰ)求方程组只有一个解的概率;
(Ⅱ)若方程组每个解对应平面直角坐标系中点P(x,y),求点P落在第四象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,由若干个小正方形组成的k层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形,除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为x1,x2,…xk,其中xi∈{0,1}(1≤i≤k),其它小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为x0
(1)当k=4时,若要求x0为2的倍数,则有多少种不同的标注方法?
(2)当k=11时,若要求x0为3的倍数,则有多少种不同的标注方法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义“等和数列”:在一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,则a18的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2-2x+alnx存在两个极值点x1,x2(x1<x2),则t<$\frac{f({x}_{1})}{{x}_{2}}$恒成立,则t(  )
A.有最大值-$\frac{3}{2}-$ln2,无最小值B.有最小值-$\frac{3}{2}$-ln2,无最大值
C.无最大值也无最小值D.有最大值4ln2,且有最小值-$\frac{3}{2}$-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=4,前n项和为Sn,且Sn+1-3Sn-2n-4=0(n∈N+
(1)证明数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)设函数f(x)=anx+an-1x2+…+a1xn,f′(x)是函数f(x)的导函数,求f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c,且满足csinA-$\sqrt{3}$acosC=0.
(1)求角C的大小;
(2)若c=2,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,4),若$\overrightarrow a$∥$\overrightarrow b$,则实数x的值为(  )
A.8B.2C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在半径为$\sqrt{3}$,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.
(Ⅰ)将y表示成θ的函数关系式,并写出定义域;
(Ⅱ)求矩形PNMQ的面积取得最大值时$\overrightarrow{OP}$•$\overrightarrow{ON}$的值;
(Ⅲ)求矩形PNMQ的面积y≥$\frac{\sqrt{6}-\sqrt{3}}{2}$的概率.

查看答案和解析>>

同步练习册答案