精英家教网 > 高中数学 > 题目详情
8.($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)7展开式中,系数最大项是第5项.

分析 ($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)7展开式中,系数的绝对值最大项是第4,5项,其中系数最大项是第5项.

解答 解:($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)7展开式中,系数的绝对值最大项是第4,5项,其中系数最大项是第5项.
T5=${∁}_{7}^{4}(\sqrt{x})^{3}$$(-\frac{1}{\sqrt{x}})^{4}$=${∁}_{7}^{4}$×$\frac{1}{\sqrt{x}}$.
故答案为:5.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{{x}^{2}-ax+4}$在[1,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1、S2、S3、S4、…、Sn
①当n=2010时,求S1+S2+S3+S4+S5+…+S2010的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2-2x+alnx存在两个极值点x1,x2(x1<x2),则t<$\frac{f({x}_{1})}{{x}_{2}}$恒成立,则t(  )
A.有最大值-$\frac{3}{2}-$ln2,无最小值B.有最小值-$\frac{3}{2}$-ln2,无最大值
C.无最大值也无最小值D.有最大值4ln2,且有最小值-$\frac{3}{2}$-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知幂函数y=(m2-m-1)x${\;}^{{m}^{2}-2m-2}$,不过原点,则幂函数为y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c,且满足csinA-$\sqrt{3}$acosC=0.
(1)求角C的大小;
(2)若c=2,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2)…(xn,yn),且回归直线方程为$\hat{y}$=a+bx,则最小二乘法的思想是(  )
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个结论正确的是(  )
①若p∧q是真命题,则¬p可能是真命题;
②命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要条件;
④当α<0时,幂函数y=xα在区间(0,+∞)上单调递减.
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值为2,则a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案