已知各项均为正数的两个无穷数列、满足.
(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;
(Ⅱ)设、都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;
(Ⅲ)设,,求证:.
(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析.
解析试题分析:(Ⅰ)由是常数列,得,进而探求数列项间的关系;(Ⅱ)将等差数列、 的通项公式代入,根据等式恒成立,求首项和公差;(Ⅲ)利用题中所给关系式对进行适当放缩,求出上界和下界.
试题解析:
(Ⅰ)因为数列是常数列,且,所以①,因此②,①-②得,,这说明数列的序号为奇数的项及序号为偶数的项均按原顺序组成公差为2的等差数列,又,,所以,因此,,即.
(Ⅱ)设、都是公差分别为,将其通项公式代入得,因为它是恒等式,所以,解得,因此.
由于可以取无穷多非零的实数,故数列有无穷多个,而数列惟一确定;
(Ⅲ)因为,且,所以,即,所以,得,因此.
又由得,,而,所以,因此
,所以,所以.
考点:等差数列、数列的递推关系、数列与不等式.
科目:高中数学 来源: 题型:解答题
已知数列及其前项和满足: (,).
(1)证明:设,是等差数列;
(2)求及;
(3)判断数列是否存在最大或最小项,若有则求出来,若没有请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设公差不为0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足++…+=1-,n∈N*,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在等差数列中,,,记数列的前项和为.
(1)求数列的通项公式;
(2)是否存在正整数、,且,使得、、成等比数列?若存在,求出所有符合条件的、的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com