精英家教网 > 高中数学 > 题目详情

设公差不为0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足+…+=1-,n∈N*,求{bn}的前n项和Tn

(Ⅰ);(Ⅱ)Tn=3-.

解析试题分析:(Ⅰ)主要利用等差、等比的概念来求;(Ⅱ)可以构造新数列,则+…+=1-为其前项和,通过可求数列的通项公式,再根据可求,然后对其求和;
试题解析:(Ⅰ) 设等差数列{an}的公差为d(d≠0),则
∵a2,a5,a14构成等比数列,
=a2a14
即(1+4d)2=(1+d)(1+13d),
解得d=0(舍去),或d=2.
∴an=1+(n-1)×2=2n-1.                    4分
(Ⅱ)由已知+…+=1-,n∈N*
当n=1时,
当n≥2时,=1--(1-)=
,n∈N*
由(Ⅰ),知an=2n-1,n∈N*
∴bn,n∈N*
又Tn+…+
Tn+…+
两式相减,得
Tn+(+…+)-
∴Tn=3-.                         12分
考点:等差、等比的基本概念;错位相减求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列的公差,它的前项和为,若,且成等比数列.
(1)求数列的通项公式;
(2)设数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:的前n项和为
(1)求
(2)已知数列的第n项为,若成等差数列,且,设数列的前项和.求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知an是一个等差数列,且a2=18,a14=—6.
(1)求an的通项an
(2)求an的前n项和Sn的最大值并求出此时n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:.的前n项和为.
(Ⅰ)求 及
(Ⅱ)若 ,),求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn,且.
(1)求数列的通项公式;
(2)令,记数列的前项和为.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的两个无穷数列满足
(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;
(Ⅱ)设都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;
(Ⅲ)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知.
(Ⅰ)求
(Ⅱ)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为等差数列,为数列的前项和,已知.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和.

查看答案和解析>>

同步练习册答案