精英家教网 > 高中数学 > 题目详情
12.已知$f(x)={2^{{x^2}-x-\frac{1}{4}}}$,则函数f(x)的值域为[$\frac{\sqrt{2}}{2}$,+∞).

分析 设t=x2-x-$\frac{1}{4}$,x∈R,根据函数t的最小值,即可求出函数$f(x)={2^{{x^2}-x-\frac{1}{4}}}$的值域.

解答 解:设t=x2-x-$\frac{1}{4}$,x∈R,
则t=${(x-\frac{1}{2})}^{2}$-$\frac{1}{2}$≥-$\frac{1}{2}$,
∴函数$f(x)={2^{{x^2}-x-\frac{1}{4}}}$≥${2}^{-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
即函数f(x)的值域为[$\frac{\sqrt{2}}{2}$,+∞).
故答案为:[$\frac{\sqrt{2}}{2}$,+∞).

点评 本题考查了复合函数的值域问题,关键是求最值问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.下列命题正确的有①④.
①若x∈R,则x2∈R
②若x2∈R,则x∈R
③若x1+y1i=x2+y2i(x1,x2,y1,y2∈C),则x1=x2且y1=y2
④若x1=x2且y1=y2,则x1+y1i=x2+y2i(x1,x2,y1,y2∈C)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=a|x-1|+1(a>0).
(Ⅰ)当a=1时,求不等式f(x)>6-|x+2|的解集;
(Ⅱ)若函数f(x)的图象与圆(x-1)2+(y-1)2=1相交形成的劣弧不超过圆周长的$\frac{1}{6}$.求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心.
(1)证明:PQ∥平面DD1C1C;
(2)求线段PQ的长;
(3)求PQ与B1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.命题P:一元二次方程x2+mx+1=0有实数根;命题q:二次不等式x2+2mx+3>0的解集为全体实数.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在同一平面直角坐标系中经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲线C变为曲线2x′2+8y′2=0,则曲线C的方程为(  )
A.25x2+36y2=0B.9x2+100y2=0C.10x+24y=0D.$\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sinx,x∈[0,$\frac{3π}{2}$],则y=f(x)和直线x=$\frac{3}{2}π$及x轴围成的封闭图形的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解方程:
$(1)A_{2x}^4=60A_x^3$
$(2)C_{n+3}^{n+1}=C_{n+1}^{n-1}+C_{n+1}^n+C_n^{n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.cos89°cos1°+sin91°sin181°=0.

查看答案和解析>>

同步练习册答案