精英家教网 > 高中数学 > 题目详情
图中阴影(包括直线)表示的区域满足的不等式是(  )
A、x-y-1≥0
B、x-y+1≥0
C、x-y-1≤0
D、x-y+1≤0
考点:二元一次不等式的几何意义
专题:不等式的解法及应用
分析:根据二元一次不等式表示平面区域,即可得到结论.
解答: 解:直线对应的方程为x-y-1=0,
对应的区域,在直线的下方,
当x=0,y=0时,0-0-1<0,
即原点在不等式x-y-1<0对应的区域内,
则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,
故选:A.
点评:本题主要考查二元一次不等式表示平面区域,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x人,成绩为8环、9环的人数情况见下表:那么x=
 

环数(环) 8 9
人数(人) 7 8

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,复数Z=
2
1+i
,则
.
Z
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2 |log2x|的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
x+y-1≥0
y≥2x-2
y≤2
,且z=kx+y取得最小值是的点有无数个,则k=(  )
A、-1B、2
C、-1或2D、1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=2sinx图象上所有点向右平移
π
6
个单位,然后把所得图象上所有点的横坐标变为原来的
1
2
倍(纵坐标不变),得到y=f(x)的图象,则下列对f(x)描述正确的是(  )
A、f(x)的对称轴是x=
2
+
π
3
(k∈Z)
B、f(x)的周期是4π
C、f(x)分单调增区间是[4kπ-
π
3
,4kπ+
7
6
π](k∈Z)
D、一个对称中心是(
π
6
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=2,an+1=4an-3n+1,n∈N*,则数列{an}的前n项和可以表示为(  )
A、
n
i=1
C
i-1
n
3n-i+1
B、
n
i=1
C
i-1
n
3n-i+i)
C、
n
i=1
C
i
n
3n-i+1
D、
n
i=1
C
i
n
3n-i+i)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线3x-4y+12=0与圆x2+y2+10x-6y-2=0的位置关系是(  )
A、相交B、相切
C、相离D、相交且过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数y=Asin(ωx+φ)+c(A>0,ω>0,0<φ<
π
2
)图象的一部分.
(1)求此函数的解析式.
(2)求此函数的单调增区间及对称中心.

查看答案和解析>>

同步练习册答案