精英家教网 > 高中数学 > 题目详情
1.已知数列{an}为等比数列,Sn是它的前n项和.设Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则T6=160.5.

分析 利用等比数通项公式及等差中项性质,列出方程组,由此能求出结果.

解答 解:∵数列{an}为等比数列,Sn是它的前n项和.
设Tn=S1+S2+…+Sn,a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,
∴$\left\{\begin{array}{l}{{a}_{1}q•{a}_{1}{q}^{2}=2{{a}_{1}}^{\;}}\\{{a}_{1}{q}^{3}+2{a}_{1}{q}^{6}=2×\frac{5}{4}}\end{array}\right.$,
解得${a}_{1}=16,q=\frac{1}{2}$,
T6=16+$\frac{16(1-\frac{1}{{2}^{2}})}{1-\frac{1}{2}}$+$\frac{16(1-\frac{1}{{2}^{3}})}{1-\frac{1}{2}}$+$\frac{16(1-\frac{1}{{2}^{4}})}{1-\frac{1}{2}}$+$\frac{16(1-\frac{1}{{2}^{5}})}{1-\frac{1}{2}}$+$\frac{16(1-\frac{1}{{2}^{6}})}{1-\frac{1}{2}}$=160.5.
故答案为:160.5.

点评 本题考查等比数列的应用,是基础题,解题时要认真审题,注意等比数列、等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,“角α的终边在射线x+3y=0(x≥0)上”是“sin2α=-$\frac{3}{5}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(理)如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=∠A1AC=60°,平面AA1CC1⊥平面ABCD.
(1)证明:BD⊥AA1
(2)求二面角D-AA1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2ln(x-1)-(x-1)2
(1)求f(x)的单调区间;
(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={0,1,2,3,4,6},集合B={y|y=2x,x∈A},则A∩B的元素个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若三点 A(-2,12),B(1,3),C(m,-6)共线,则m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$),且其图象关于直线x=0对称,则(  )
A.y=f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为增函数
B.y=f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为减函数
C.y=f(x)的最小正周期为$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上为增函数
D.y=f(x)的最小正周期为$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=5+x+2sinx,x∈(0,π)的单调递增区间是(0,$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.现有4种不同的颜色为“严勤活实”四个字涂颜色,要求相邻的两个字涂色不同,则不同的涂色种数为(  )
A.27B.54C.108D.144

查看答案和解析>>

同步练习册答案