分析 (1)若a=3,关于x的不等式即 $\frac{x-3}{x+1}$<0,即 (x-3)(x+1)<0,由此求得原不等式的解集.
(2)先解绝对值求出Q,再解分式不等式求得P,结合Q⊆P,求得正数a的取值范围.
解答 解:(1)若a=3,关于x的不等式$\frac{x-a}{x+1}<0$,即 $\frac{x-3}{x+1}$<0,即 (x-3)(x+1)<0,
求得-1<x<3,可得原不等式的解集为P=(-1,3).
(2)由不等式|x-1|<1,可得-1<x-1<1,即 0<x<2,故原不等式的解集为Q=(0,2).
由a>0,关于x的不等式$\frac{x-a}{x+1}<0$,即(x-a)(x+1)<0,求得它的解集为P=(-1,a),
再根据Q⊆P,可得2≤a,故a的范围为{a|a≥2}.
点评 本题主要考查分式不等式的解法,集合间的包含关系,体现了分类讨论的数学思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com