精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为数学公式
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数学公式,求数列{bn}的前n项和Tn

解:(Ⅰ)当n≥2时,
当n=1,a1=S1=1,满足上式
∴an=n(n∈N*)②
(Ⅱ)由,得bn=n•2n
Tn=2+2•22+3•23++(n-1)•2n-1+n•2n  
2Tn=22+2•23+3•24++(n-1)•2n+n•2n+1 
①-②得,
-Tn=2+22+23++2n-1+2n-n•2n+1=2n+1-2-n•2n+1
∴Tn=(n-1)•2n+1+2.
分析:(Ⅰ)当n≥2时,根据an=sn-sn-1,求数列{an}的通项公式,然后验证当n=1时,也符合上式,即可求出通项公式.
(Ⅱ)先写数列{bn}的通项公式,然后看出数列{bn}的前n项和Tn和2Tn,再计算出Tn-2Tn,进而可以求出前n项和Tn
点评:本题考查了等差数列的通项公式以及数列的求和,对于等差数列与等比数列相乘形式的数列求和,一般采取错位相减的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案