精英家教网 > 高中数学 > 题目详情

已知F1,F2分别为椭圆的上下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=

(1)求椭圆C1的方程;

(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足且λ≠±1.

求证:点Q总在某定直线上.

答案:
解析:

  (1)由知,,设,因在抛物线上,故

  ,又,则,得,而点

  在椭圆上,有,又,所以椭圆方程为(5分)

  (2)设,由,得

  

  

  由,得

  ,④(7分)

  ③,得,②④,得(9分)

  两式相加得,又点在圆

  上,由(1)知,即在圆上,且

  ,即

  总在定直线上.(12分)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
25
+
y2
9
=1的左、右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|
PF1
|-|
PF2
|=4,则
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为椭圆
x2
3
+
y2
2
=1
的左、右焦点,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为D,线段DF2的垂直平分线交l2于点M.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)过点F1作直线交曲线C于两个不同的点P和Q,设
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
16
+
y2
9
=1
的左、右焦点,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则△PF1F2的面积为
9
7
4
9
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的
2
3
,则椭圆的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲线x2-
y2
4
=1
的左、右焦点,P是双曲线上的动点,过F1作∠F1PF2的平分线的垂线,垂足为H,则点H的轨迹为(  )

查看答案和解析>>

同步练习册答案