精英家教网 > 高中数学 > 题目详情

中,三个内角所对的边分别为的面积等于.
(1)求的值;(6分)
(2)求.(4分)

(1)a=8,c=7(2) 

解析试题分析:解:




考点:解三角形
点评:解决的关键是根据三角形的面积公式以及余弦定理来得到求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知的最小正周期为
(Ⅰ)当时,求函数的最小值;
(Ⅱ)在,若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α.
(1)若A点的坐标为,求的值;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点

(1)若是半径的中点,求线段的大小;
(2)设,求△面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把函数的图像上的每一点的横坐标伸长为原来的2倍,纵坐标不变,然后再向左平移个单位后得到一个最小正周期为的奇函数
(1)求的值
(2)求函数的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)求的增区间;
(2)已知△ ABC内接于半径为6的圆,内角A、B、C的对边分别
,若,求边长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像上两相邻最高点的坐标分别为.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数
(1)求函数的最小正周期T及单调减区间;
(2)已知a,b,c分别为ABC内角A,B,C的对边,其中A为锐角,,,且.求A,b的长和ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,设.
(1)求函数的最小正周期,并写出的减区间;
(2)当时,求函数的最大值及最小值.

查看答案和解析>>

同步练习册答案