精英家教网 > 高中数学 > 题目详情
如图所示为一个平面四边形ABCD的直观图,A′D′∥B′C′,且 A′D′=B′C′,则它的实际形状(  )
A、平行四边形B、梯形
C、菱形D、矩形
考点:平面图形的直观图
专题:计算题,空间位置关系与距离
分析:由直观图可知,AB,CD两条边与横轴平行且相等,边BC与纵轴平行,得到AB与BC两条相邻的边之间是垂直关系,得到平面图形是一个矩形.
解答: 解:根据直观图可知,AB,CD两条边与横轴平行且相等,
故四边形ABCD为平行四边形,
边BC与纵轴平行,
∴AB⊥BC,
∴平面图形ABCD是一个矩形,
故选:D.
点评:本题考查平面图形的直观图,考查有直观图得到平面图形,考查画直观图要注意到两条坐标轴之间的关系,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆(x-1)2+(y-1)2=2:经过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F和上顶点 B,则椭圆C的离心率为(  )
A、
1
2
B、
2
C、2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图中O′A′B′C′为四边形OABC的斜二测直观图,则原平面图形OABC是(  )
A、直角梯形
B、等腰梯形
C、非直角且非等腰的梯形
D、不可能是梯形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=lg(ax2-x+
1
16
a)的定义域为R,命题q:q:不等式
2x+1
<1+ax对一切正实数x均成立.如果,命题“p∨q”为真命题,命题“p∧q”为假命题,则实数a的取值范围为(  )
A、a>1B、1≤a≤2
C、a>2D、无解

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=2sinx(0≤x≤п)的图象为曲线C,动点A(x,y)在曲线C上,过A且平行于x轴的直线交曲线C于点B(A、B可以重合),设线段AB的长为f(x),则函数f(x)单调递增区间
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图中,图一的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在如图二画出(单位:cm),P为原长方体上底面A1B1C1D1的中心.
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图(直尺作图);
(2)以D为原点建立适当的空间直角坐标系(右手系),在图中标出坐标轴,并按照给出的尺寸写出点E,P的坐标;
(3)连接AP,证明:AP∥面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
16
-
y2
9
=1的左、右焦点分别为F1,F2,过F2的直线与该双曲线的右支交于A,B两点,若|AB|=7,则△ABF1的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角梯形MCDE中,EM∥DC,ED⊥DC,B是EM上一点,CD=BM=
2
CM=2,EB=ED=1,沿BC把△MBC折起,使平面MBC⊥平面BCDE,得出右侧的四棱锥A-BCDE.
(1)证明:平面EAD⊥平面ACD;
(2)求二面角E-AD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1-i
i
的虚部是(  )
A、-1B、1C、-iD、i

查看答案和解析>>

同步练习册答案