精英家教网 > 高中数学 > 题目详情
若椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)过点(2,1),离心率为
2
2
,F1,F2分别为其左、右焦点.
(Ⅰ)若点P与F1,F2的距离之比为
1
3
,求直线x-
2
y+
3
=0
被点P所在的曲线C2截得的弦长;
(Ⅱ) 设A1,A2分别为椭圆C1的左、右顶点,Q为C1上异于A1,A2的任意一点,直线A1Q交C1的右准线于点M,直线A2Q交C1的右准线于点N,求证MF2⊥NF2
分析:(I)由题意得:
22
a2
+
12
b2
=1
c
a
=
2
2
a=
6
b=
3
c=
3
,F1,F2的坐标分别为:(-
3
,0),(
3
,0).设点P(x,y)与F1,F2的距离之比为
1
3
,得出P所在的曲线C2是一个圆心在(-
3
3
4
,0)半径为:
3
3
4
的圆,利用圆的性质即可求出直线x-
2
y+
3
=0
被点P所在的曲线C2截得的弦长.
(II)先设Q(s,t),由题意直线QA1的方程,直线QA2的方程.由于椭圆右准线方程为x=
a2
c
=2
3
,F2
3
,0),求出直线QA1.QA2分别交椭圆的右准线于M、N点最后利用斜率公式证得kMF 2•k NF 2=-1即可.
解答:解:由题意得:
22
a2
+
12
b2
=1
c
a
=
2
2
a=
6
b=
3
c=
3
,F1,F2的坐标分别为:(-
3
,0),(
3
,0).
(I)设点P(x,y)与F1,F2的距离之比为
1
3

则:
(x+
3
) 2+y 2
(x-
3
) 2+y 2 
=
1
3
⇒(x+
3
3
4
2+y2=
27
16

是一个圆心在(-
3
3
4
,0)半径为:
3
3
4
的圆,
圆心到直线直线x-
2
y+
3
=0
的距离为d=
3
4
3
=
1
4

直线x-
2
y+
3
=0
被点P所在的曲线C2截得的弦长为:
2
27
16
-
1
16
=
26
2

(II)设Q(s,t),由题意直线QA1的方程为
y
t
+
x-
6
s+
6
=1

直线QA2的方程为
y
t
+
x+
6
s-
6
=1

由于椭圆右准线方程为x=
a2
c
=2
3
,F2
3
,0),
∵直线QA1.QA2分别交椭圆的右准线于M、N点
∴M(2,
6
s+
6
t
),N(2,
2
s-
6
t

又P(s,t)在椭圆上,故有t2=3-
s2
2
 代入整理得
kMF 2•k NF 2=-1
∴MF2⊥NF2
点评:本题主要考查了椭圆的标准方程和直线与椭圆的关系,考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与双曲线 C2:x2-
y2
4
=1
有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则椭圆C1的离心率为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
过点(2,
3
)
,且它的离心率e=
1
2
.直线l:y=kx+t与椭圆C1交于M、N两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当k=
3
2
时,求证:M、N两点的横坐标的平方和为定值;
(Ⅲ)若直线l与圆C2:(x-1)2+y2=1相切,椭圆上一点P满足
OM
+
ON
OP
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
与抛物线C2:x2=2py(p>0)的一个交点为M,抛物线C2在点M处的切线过椭圆C1的右焦点F.
(Ⅰ)若M(2,
2
5
5
)
,求C1和C2的标准方程;
(II)求椭圆C1离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)过点(2,1),离心率为
2
2
,F1,F2分别为其左、右焦点.
(Ⅰ)若点P与F1,F2的距离之比为
1
3
,求直线x-
2
y+
3
=0
被点P所在的曲线C2截得的弦长;
(Ⅱ) 设A1,A2分别为椭圆C1的左、右顶点,Q为C1上异于A1,A2的任意一点,直线A1Q交C1的右准线于点M,直线A2Q交C1的右准线于点N,求证MF2⊥NF2

查看答案和解析>>

同步练习册答案