精英家教网 > 高中数学 > 题目详情
4.函数y=lncos(2x+$\frac{π}{4}$)的一个单调递减区间是(  )
A.(-$\frac{5π}{8}$,-$\frac{π}{8}$)B.(-$\frac{3π}{8}$,-$\frac{π}{8}$)C.(-$\frac{π}{8}$,$\frac{π}{8}$)D.(-$\frac{π}{8}$,$\frac{3π}{8}$)

分析 先求出函数的定义域,结合复合函数单调性的关系进行求解即可.

解答 解:设t=cos(2x+$\frac{π}{4}$),则lnt在定义域上为增函数,
要求函数y=lncos(2x+$\frac{π}{4}$)的一个单调递减区间,
即求函数函数t=cos(2x+$\frac{π}{4}$)的一个单调递减区间,同时t=cos(2x+$\frac{π}{4}$)>0,
即2kπ≤2x+$\frac{π}{4}$<2kπ+$\frac{π}{2}$,k∈Z,
即kπ-$\frac{π}{8}$≤x<kπ+$\frac{π}{8}$,k∈Z,
当k=0时,-$\frac{π}{8}$≤x<$\frac{π}{8}$,即函数的一个单调递减区间为(-$\frac{π}{8}$,$\frac{π}{8}$),
故选:C

点评 本题主要考查函数单调区间的求解,利用复合函数单调性之间的关系以及对数函数和三角函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知复数z满足(3+4i)z=1(i为虚数单位),则z的实部为$\frac{3}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD为矩形,PA⊥平面ABCD,DE∥PA.
(Ⅰ)求证:BC⊥CE;
(Ⅱ)若直线m?平面PAB,试判断直线m与平面CDE的位置关系,并说明理由;
(Ⅲ)若AB=PA=2DE=2,AD=3,求三棱锥E-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}2x-1,x>0\\{x^2}+x,x≤0\end{array}$,若函数g(x)=f(x)-m有三个零点,则实数m的取值范围是$(-\frac{1}{4},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某公司对新招聘的员工张某进行综合能力测试,共设置了A、B、C三个测试项目.假定张某通过项目A的概率为$\frac{1}{2}$,通过项目B、C的概率均为a(0<a<1),且这三个测试项目能否通过相互独立.
(1)用随机变量X表示张某在测试中通过的项目个数,求X的概率分布和数学期望E(X)(用a表示);
(2)若张某通过一个项目的概率最大,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥P-ABC中,PA=AB=AC=1,PA⊥面ABC,∠BAC=$\frac{2π}{3}$,则三棱锥P-ABC的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.4和10的等差中项是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.满足条件M?{1,2}的集合M有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知f(x)是一次函数,且f(f(x))=4x-1,求函数f(x)的解析式.
(2)已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-1,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案