精英家教网 > 高中数学 > 题目详情
设Sn为数列{an}的前n项和,Sn=(-1)nan-
1
2n
,n∈N+,则a2+a4+a6+…+a100=
1
3
(1-
1
2100
)
1
3
(1-
1
2100
)
分析:由Sn=(-1)nan-
1
2n
,得Sn-1=(-1)n-1an-1-
1
2n-1
(n≥2),两式相减可得递推式,分n为偶数、奇数可得奇数项、偶数项的通项公式,从而可得答案.
解答:解:由Sn=(-1)nan-
1
2n
,得Sn-1=(-1)n-1an-1-
1
2n-1
(n≥2),
两式相减得,an=(-1)nan-(-1)n-1an-1+
1
2n
,即[1+(-1)n+1]an=(-1)nan-1+
1
2n
(n≥2)

当n=2k(k∈N+)时,得a2k-1=-
1
22k
,即n为正奇数时,有an=-
1
2n+1
,;
当n=2k+1(k∈N+)时,得2a2k+1=-a2k+
1
22k+1
,由上式得,2(-
1
2k+2
)=-a2k+
1
22k+1

所以a2k=
1
22k
,即n为正偶数时,an=
1
2n

所以a2,a4,a6,…a100构成以
1
4
为首项,
1
4
为公比的等比数列,
所以
1
4
(1-
1
450
)
1-
1
4
=
1
3
(1-
1
2100
)

故答案为:
1
3
(1-
1
2100
)
点评:本题考查数列递推式、数列求和,考查学生的推理论证能力,解决本题的关键是要根据问题进行分类讨论求得通项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=λan-1(λ为常数,n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在.请说明理由
(III)当λ=2时,若数列{bn}满足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)设Sn为数列{an}的前n项和,求anbn和Sn
(Ⅱ)设Cn=
anbnSn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=n2+pn,n∈N*,其中p是实数.
(1)若数列{
Sn
}
为等差数列,求p的值;
(2)若对于任意的m∈N*,am,a2m,a4m成等比数列,求p的值;
(3)在(2)的条件下,令b1=a1,bn=a2n-1,其前n项和为Tn,求Tn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前N项和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}是单调递增数列,求a的取值范围.

查看答案和解析>>

同步练习册答案