精英家教网 > 高中数学 > 题目详情
18.“a>b”是“lna>lnb”的必要不充分条件(从“充分不必要”,“必要不充分”,“充要”和“既不充分也不必要”)

分析 由“lna>lnb”⇒a>b>0,反之,由a>b无法推出“lna>lnb”.即可判断出关系.

解答 解:由“lna>lnb”⇒a>b>0,
反之,由a>b无法推出“lna>lnb”.
∴a>b”是“lna>lnb”的必要不充分条件.
故答案为:必要不充分.

点评 本题考查了对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,BD=2AD=8,AB=4$\sqrt{5}$.
(Ⅰ)证明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B-PA-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在(2x2-$\frac{1}{\sqrt{x}}$)6的展开式中,含x7的项的系数是240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(2x+φ),将其图象向左平移$\frac{π}{6}$个单位长度后得到的函数为偶函数,则φ的最小正值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在棱长为4的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM和CN所成的角的余弦值是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{10}}{10}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin210°的值等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若点P(sinθ,cosθ)在直线2x+y=0上,则tan2θ=(  )
A.$-\frac{4}{5}$B.$\frac{4}{3}$C.-$\frac{4}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知动点M(x,y)到直线l:x=3的距离是它到点D(1,0)的距离的$\sqrt{3}$倍.
(1)求动点M的轨迹C的方程;
(2)设轨迹C上一动点T满足:$\overrightarrow{OT}$=2λ$\overrightarrow{OP}$+3μ$\overrightarrow{OQ}$,其中P、Q是轨迹C上的点,且直线OP与OQ的斜率之积为-$\frac{2}{3}$.若N(λ,μ)为一动点,F1(-$\frac{\sqrt{5}}{6}$,0)、F2($\frac{\sqrt{5}}{6}$,0)为两定点,求|NF1|+|NF2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=cos({ωx+\frac{π}{6}})$(ω>0)的最小正周期为π,则f(x)满足(  )
A.在$({0,\frac{π}{3}})$上单调递增B.图象关于直线$x=\frac{π}{6}$对称
C.$f({\frac{π}{3}})=\frac{{\sqrt{3}}}{2}$D.当$x=\frac{5π}{12}$时有最小值-1

查看答案和解析>>

同步练习册答案