精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=sin(2x+φ),将其图象向左平移$\frac{π}{6}$个单位长度后得到的函数为偶函数,则φ的最小正值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 根据三角函数图象平移法则,结合正弦、余弦函数的奇偶性,即可求出φ的最小正值.

解答 解:函数f(x)=sin(2x+φ),
将其图象向左平移$\frac{π}{6}$个单位长度,
得y=sin[2(x+$\frac{π}{6}$)+φ]的图象,
即y=sin(2x+$\frac{π}{3}$+φ);
又函数y为偶函数,
∴$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$(k∈Z),
解得φ=kπ+$\frac{π}{6}$(k∈Z);
∴φ的最小正值为$\frac{π}{6}$.
故选:B.

点评 本题考查了三角函数的图象平移问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设各项均为正数的等比数列{an}中,a1a3=64,a2+a4=72,数列{bn}的前n向和Sn满足Sn=$\frac{{n}^{2}+n}{2}$
(1)求数列{an}的通项an及数列{bn}的通项bn
(2)设cn=$\frac{1}{{b}_{n}•lo{g}_{2}{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知复数z满足$z+\overline z=6$,|z|=5.
(1)求复数z的虚部;
(2)求复数$\frac{z}{1-i}$的实部.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=$\sqrt{6}$.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若E是PA的中点,求三棱锥P-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an2+an(n∈N*),则$\sum_{n=1}^{2018}$$\frac{1}{{a}_{n}+1}$的整数部分是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某大学生对共享单车的使用情况,从该校学生中随机抽取了部分同学进行调查,得到男生、女生每周使用共享单车的时间(单位:小时)如下表:
使用时间[0,2](2,4](4,6]
女生人数2020z
男生人数204060
按每周使用时间分层抽样的方法在这些学生中抽取10人,其中每周使用时间在[0,2]内的学生有2人.
(Ⅰ)求z的值;
(Ⅱ)将每周使用时间在(2,4]内的学生按性别分层抽样的方法抽取一个容量为6的样本.若从该样本中任取2人,求至少有1位女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“a>b”是“lna>lnb”的必要不充分条件(从“充分不必要”,“必要不充分”,“充要”和“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.角A、B、C为△ABC的三个内角,函数f(x)=2sin(x-A)cosx+sin(B+C)(x∈R)的图象关于直线x=$\frac{5π}{12}$对称,则A=(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${({2x-\frac{1}{{\sqrt{x}}}})^5}$的展开式中,$\sqrt{x}$的系数为-40.

查看答案和解析>>

同步练习册答案