精英家教网 > 高中数学 > 题目详情
14.已知四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=$\sqrt{6}$.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若E是PA的中点,求三棱锥P-BCE的体积.

分析 (I)连接AC交BD于O点,由BD⊥AC,BD⊥OP得出BD⊥平面PAC,故PC⊥BD;
(II)利用勾股定理计算OA,OP,证明OA⊥OP,得出三角形PCE的面积,于是VP-BCE=VB-PCE=$\frac{1}{3}$S△PCE•OP.

解答 证明:(I)连接AC交BD于O点,
∵四边形ABCD是菱形,∴AC⊥BD,O是BD的中点,
∵PB=PD,∴PO⊥BD,
又AC∩OP=O,AC?平面PAC,OP?平面PAC,
∴BD⊥平面PAC,又PC?平面PAC,
∴BD⊥PC.
(II)∵四边形ABCD是菱形,∠BAD=60°,
∴BD=AB=AD=2,∴OB=1,OA=$\sqrt{3}$,
∴OP=$\sqrt{P{B}^{2}-O{B}^{2}}$=$\sqrt{3}$,∴OA2+OP2=PA2,即OA⊥OP.
∴S△PCE=$\frac{1}{2}$S△PAC=S△POA=$\frac{1}{2}$×$\sqrt{3}×\sqrt{3}$=$\frac{3}{2}$.
∴又OB⊥平面PAC,
∴VP-BCE=VB-PCE=$\frac{1}{3}$S△PCE•OB=$\frac{1}{3}×$$\frac{3}{2}$×1=$\frac{1}{2}$.

点评 题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)为偶函数,且在[0,+∞)上单调递增,f(-3)=0,则满足f(x2-x+1)>0的x的取值范围为(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m+1,-m),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m的值为(  )
A.-1B.1C.-$\frac{1}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}x+2≥y\\ x+2y≥4\\ y≤5-2x\end{array}\right.$则z=3x+2y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在(2x2-$\frac{1}{\sqrt{x}}$)6的展开式中,含x7的项的系数是240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{ax}{x+1}$(a∈R)
(1)若函数f(x)在区间(0,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(2x+φ),将其图象向左平移$\frac{π}{6}$个单位长度后得到的函数为偶函数,则φ的最小正值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin210°的值等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆x2+y2=4,直线l:y=x+b,若圆x2+y2=4上恰有4个点到直线l的距离都等于1,则b的取值范围为(  )
A.(-1,1)B.[-1,1]C.$[{-\sqrt{2},\sqrt{2}}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

同步练习册答案