分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x+2≥y\\ x+2y≥4\\ y≤5-2x\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x+2=y}\\{y=5-2x}\end{array}\right.$,解得A(1,3),
化目标函数z=3x+2y为$y=-\frac{3}{2}x+\frac{z}{2}$,
由图可知,当直线$y=-\frac{3}{2}x+\frac{z}{2}$过点A(1,3)时,截距$\frac{z}{2}$最大,z取得最大值9,
故答案为:9.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\sqrt{21}$ | C. | $\frac{\sqrt{45}}{2}$ | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用时间 | [0,2] | (2,4] | (4,6] |
| 女生人数 | 20 | 20 | z |
| 男生人数 | 20 | 40 | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com